
An Incremental Approach to the Semantics of
Borrowing

Brianna Marshall, Andrew Wagner, John Li, Olek Gierczak, Amal Ahmed
Northeastern University

Boston, USA

1 Introduction
Linear type systems are useful for managing ownership of
resources, but they can be cumbersome to use. Oftentimes,
a developer will temporarily give a resource to a function,
and expect it back when the function is done using it. In a
linear type system, the resource must be explicitly threaded
through and returned by the function.

Rust [6] provides a compromise by allowing a developer
to borrow a resource before passing it to a function.The func-
tion has access to the resource as if it was given it directly,
but there is no need for it to return it when it’s done. The
original owner simply gets it back automatically. This is en-
forced by a lifetime, which is part of the type of the bor-
rowed resource. The lifetime prevents the borrow from be-
ing used past a certain point, after which the original owner
regains full ownership of the resource.

The semantics and typing of borrowing in Rust are com-
plicated, with a subtle interplay between ownership, immutable
and mutable borrows, and lifetimes. In this work, to eluci-
date the semantics of borrowing, we build core features of
borrowing from the ground up. We use a linear variant of
call-by-push-value [5] as a starting point, in which we only
support ownership of resources. We increase the flexibility
of the language in stages, adding different forms of borrows,
and then adding lifetimes.

We present a semantic model, a domain-specific separa-
tion logic, and a type system for each stage of our borrowing
system, and prove semantic type soundness of each using
the reasoning power of the logics. As a corollary of our se-
mantic soundness result, we have that every well typed pro-
gram in each of the borrow calculi is terminating and does
not leak memory. Finally, we also show how our separation
logic can be used to reason beyond typed programs and val-
idate programs that safely break and reestablish invariants.

2 A Spectrum of Borrowing Features
The core objective of borrowing is to relax the restrictions
of linear type systems without losing the benefits of precise
resource management. We show how this may be accom-
plished gradually, by distilling borrowing into a handful of
incremental modifications to a traditional linear type sys-
tem.

HOPE, September 2, 2024, Milan, Italy
2024. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM

Linear Types. The two characteristic features of linear
type systems are (1) that axioms (e.g., for variables) are pre-
cise about the variables in context; and (2) that contexts are
split among premises in rules with multiple sub-terms (e.g.,
let).

id
𝑥 : 𝑉 ⊢ 𝑥 : 𝑉

let
Γ1 ⊢ 𝑒1 : Ret𝑉 Γ2, 𝑥 : 𝑉 ⊢ 𝑒2 : 𝐶

Γ1, Γ2 ⊢ let𝑥 = 𝑒1; 𝑒2 : 𝐶

Taken together, these features can prevent aliasing bugs
and the leakage of resources. However, they can also be
cumbersome. For example, from a file library, we might ex-
pect to find the function size : File ⊸ Ret Nat, but instead
we would find size : File ⊸ Ret (Nat ⊗ File). Not only
does this signature require the use of an awkward capability-
passing style [1, 2], it also obscures the intended behavior: as
a client, we cannot assume that the input file is unmodified,
nor that the output file is actually the same as the input file.

Downward-Only, Immutable Borrows. Instead, wewould
like to be able to temporarily mark a variable as immutable,
during which time it can be freely aliased and discarded,
but after which ownership is reinstated. While this idea has
had various incarnations [4, 7, 8, 10, 12], we take inspira-
tion from Perceus [11] and use an unrestricted borrowable
context Δ to mark such variables. In the let rule below, since
𝑒1 runs before 𝑒2, it can borrow the variables that 𝑒2 owns.
To ensure that 𝑒2 regains ownership of its variables before
it runs, the return type of 𝑒1 may not contain any borrows.
Moreover, thunks cannot close over any borrows, since it
may be forced after the borrows have ended.

let
Δ, Γ2; Γ1 ⊢ 𝑒1 : Ret𝑉 Δ; Γ2, 𝑥 : 𝑉 ⊢ 𝑒2 : 𝐶 𝑉 owned

Δ; Γ1, Γ2 ⊢ let𝑥 = 𝑒1; 𝑒2 : 𝐶

bRw
Δ ∋ 𝑥 : 𝑉

Δ;∅ ⊢ brw 𝑥 : Brw 𝑉

thunK
∅; Γ ⊢ 𝑒 : 𝐶

Δ; Γ ⊢ thunk 𝑒 : Thunk 𝐶

Using borrows, we can improve the earlier signature to
size : Brw File⊸Ret Nat. However, borrows are effectively
second-class values, since they may not be returned from a
sequenced computation nor closed over in thunks.

Lifetimes. To overcome this limitation, every borrow is
annotated with a lifetime during which the borrow is al-
lowed to escape and after which it may not. When variables
become borrowable (see let), they are annotated with an
upper bound on how long they may be borrowed: below,

1



HOPE, September 2, 2024, Milan, Italy Brianna Marshall, Andrew Wagner, John Li, Olek Gierczak, Amal Ahmed

Γ2 [𝑙] annotates every binding with 𝑙 . Subsequently, any bor-
row of one of these variables (see bRw) is taken at a strictly
shorter lifetime, 𝑙 ′ < 𝑙 . Additionally, a thunk is annotated
with a lower bound on the lifetimes it closes over. Together,
these annotations ensure that it is sufficient to examine a
value’s return type in order to determine whether it is al-
lowed to escape. This demonstrates one advantage of using
call-by-push-value: in a call-by-value calculus, an annota-
tion is required on every negative type (e.g., functions, ad-
ditive/lazy products), and in a call-by-name calculus, an an-
notation is required on every type.

let
Δ, Γ2 [𝑙]; Γ1 ⊢ 𝑒1 : Ret𝑉 Δ; Γ2, 𝑥 : 𝑉 ⊢ 𝑒2 : 𝐶 𝑉 > 𝑙

Δ; Γ1, Γ2 ⊢ let𝑥 = 𝑒1; 𝑒2 : 𝐶

bRw
Δ ∋ 𝑥 : 𝑉 [𝑙] 𝑙 ′ < 𝑙

Δ;∅ ⊢ brw 𝑥 : Brw𝑙 ′ 𝑉

thunK
Δ; Γ ⊢ 𝑒 : 𝐶 Δ, Γ ≥ 𝑙

Δ; Γ ⊢ thunk 𝑒 : Thunk 𝑙 𝐶

Mutable Borrows. Theborrowingmachinery introduced
so far works just as well for mutable borrows, or resources
that can be temporarily updated but not freed. However, mu-
table borrows may not be aliased. To resolve this, the only
additional restriction needed is that the mutable borrowable
context Δ𝑚 is split between sub-terms, as usual. Below we
now use Δ𝑖 for the immutable borrowable context.

let
Δ𝑖 , Γ

𝑖
2 [𝑙];Δ

1
𝑚, Γ𝑚2 [𝑙]; Γ1 ⊢ 𝑒1 : Ret𝑉

Δ𝑖 ;Δ
2
𝑚 ; Γ12 , Γ

2
2 , 𝑥 : 𝑉 ⊢ 𝑒2 : 𝐶 𝑉 > 𝑙

Δ𝑖 ;Δ
1
𝑚,Δ2

𝑚 ; Γ1, Γ
𝑖
2, Γ

𝑚
2 ⊢ let𝑥 = 𝑒1; 𝑒2 : 𝐶

Lifetime Polymorphism. So far, functions over borrows
will only work at particular lifetimes, but in many cases the
particular lifetimes are less important than their relation-
ship to other lifetimes. To make the system more flexible,
we additionally allow bounded quantification over lifetimes,
where the bounds are tracked in a constraint context.

3 A Logical Approach to Borrowing
For each of our calculi, we prove that the type system is
sound, ensuring both termination and the absence of mem-
ory leaks. We do so using semantic type soundness: types
are interpreted into a logical relation over domain-specific
separation logic predicates, and we prove the fundamental
theorem using this logic.

In a standard separation logic, the frame rule can be used
to temporarily ignore a resource 𝑅 for the duration of an
expression:

FRame
{𝑃} 𝑒 {𝑅}

{𝑃 ★𝑄} 𝑒 {𝑄 ★𝑅}

As originally developed by Charguéraud and Pottier [3],
instead of ignoring𝑄 completely,𝑄 can be temporarily “down-
graded” to an immutable borrow using the borrow frame
rule:

BRw-FRame-IDO
{𝑃 ★Brw 𝑄} 𝑒 {𝑅} 𝑅 owned

{𝑃 ★𝑄} 𝑒 {𝑄 ★𝑅}

Such a rule can be used to validate the soundness of the
downward-only, immutable let typing rule: the interpreta-
tion of the newly borrowable context will be borrow-framed
in the premise. Notice that the post-condition 𝑅 is required
to be owned (i.e., must always be satisfied without borrows),
matching the side-condition in the typing rule. A Brw 𝑄
proposition is always duplicable even when 𝑄 is not, and
it only confers immutable access to the resource satisfying
𝑄 , as expected. Following the changes to the type system,
this rule can be updated to support lifetimes and mutable
borrows:

BRw-FRame
{𝑃 ★Brw𝑚

𝑙 𝑄} 𝑒 {𝑅} 𝑄, 𝑅 > 𝑙

{𝑃 ★𝑄} 𝑒 {𝑄 ★𝑅}

Taking inspiration from the anti-frame rule of Pottier [9],
we also show that a mutable borrow can be temporarily
“upgraded” to full ownership using themutable borrow anti-
frame rule. Given a mutable borrow of a proposition, which
can be thought of as a temporary invariant, we are permit-
ted to “open” the invariant so long as we re-establish it again
in the post-condition.

Mut-BRw-Anti-FRame
{𝑃 ★𝑄} 𝑒 {𝑄 ★𝑅}

{𝑃 ★Brwmut
𝑙 𝑄} 𝑒 {𝑅}

4 Semantic Model
Soundness of the logic is established using a Kripke resource
model that distinguishes betweenwhat is owned, immutably
borrowed, and mutably borrowed. The owned fragment is
simply an exclusive heap, as is standard in separation logic.
The immutable fragment contains shareable, individual re-
sources, which represent the state “frozen” at the time of
the borrow. The mutable fragment contains exclusive pred-
icates, which represent the invariants that must hold dur-
ing the borrow. Even though the model supports higher-
order store, the substructural discipline prevents cycles in
the heap, and we manage to prove termination by using a
novel stratification measure in our semantic models.

5 Conclusion
This is work in progress. The languages, type systems, oper-
ational semantics, and logics are fully developed. The logi-
cal relations are defined and we have proved a large part of
the fundamental property using the logic. We are currently
working on establishing the soundness of the logic using
our semantic model. We expect to have completed all the
work and submitted a conference paper prior to HOPE in
September. We would like a 30-minute slot for the talk.

2



An Incremental Approach to the Semantics of Borrowing HOPE, September 2, 2024, Milan, Italy

References
[1] Amal Ahmed, Matthew Fluet, and Greg Morrisett. 2007. L3: a linear

language with locations. Fundamenta Informaticae 77, 4 (2007), 397–
449.

[2] Arthur Charguéraud and François Pottier. 2008. Functional transla-
tion of a calculus of capabilities. In Proceedings of the 13th ACM SIG-
PLAN international conference on Functional programming. 213–224.

[3] Arthur Charguéraud and François Pottier. 2017. Temporary read-only
permissions for separation logic. In Programming Languages and Sys-
tems: 26th European Symposium on Programming, ESOP 2017, Held as
Part of the European Joint Conferences on Theory and Practice of Soft-
ware, ETAPS 2017, Uppsala, Sweden, April 22–29, 2017, Proceedings 26.
Springer, 260–286.

[4] Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek
Dreyer. 2017. RustBelt: Securing the foundations of the Rust program-
ming language. Proceedings of the ACM on Programming Languages 2,
POPL (2017), 1–34.

[5] Paul Blain Levy. 1999. Call-by-Push-Value: A Subsuming Paradigm.
In Proceedings of the 4th International Conference on Typed Lambda
Calculi and Applications (TLCA ’99). Springer-Verlag, Berlin, Heidel-
berg, 228–242.

[6] Nicholas DMatsakis and Felix S Klock. 2014. The rust language. ACM
SIGAda Ada Letters 34, 3 (2014), 103–104.

[7] Liam O’Connor, Christine Rizkallah, Zilin Chen, Sidney Amani,
Japheth Lim, Yutaka Nagashima, Thomas Sewell, Alex Hixon,
Gabriele Keller, Toby Murray, et al. 2016. COGENT: certified
compilation for a functional systems language. arXiv preprint
arXiv:1601.05520 (2016).

[8] Martin Odersky. 1992. Observers for linear types. In European Sym-
posium on Programming. Springer, 390–407.

[9] François Pottier. 2008. Hiding local state in direct style: a higher-order
anti-frame rule. In 2008 23rd Annual IEEE Symposium on Logic in Com-
puter Science. IEEE, 331–340.

[10] Gabriel Radanne, Hannes Saffrich, and Peter Thiemann. 2020. Kindly
bent to free us. Proceedings of the ACM on Programming Languages 4,
ICFP (2020), 1–29.

[11] Alex Reinking, Ningning Xie, Leonardo de Moura, and Daan Leijen.
2021. Perceus: Garbage free reference counting with reuse. In Proceed-
ings of the 42nd ACM SIGPLAN International Conference on Program-
ming Language Design and Implementation. 96–111.

[12] Philip Wadler. 1990. Linear types can change the world!. In Program-
ming concepts and methods, Vol. 3. Citeseer, 5.

3


	1 Introduction
	2 A Spectrum of Borrowing Features
	3 A Logical Approach to Borrowing
	4 Semantic Model
	5 Conclusion
	References

