
Realistic Realizability: Specifying ABIs You Can Count On
Technical Appendix

ANDREWWAGNER, Northeastern University, USA
ZACHARY EISBACH, Northeastern University, USA
AMAL AHMED, Northeastern University, USA

Contents

Contents 1
List of Figures 1
A Source 3
A.1 Syntax 3
A.2 Statics 4
B Target 5
B.1 Syntax 5
B.2 Dynamics 6
C Compiler 7
D Logic 9
E ABI 15
F Proofs 16
F.1 Domains 16
F.2 Logic 27
F.3 Properties of the ABI 59
F.4 Compiler Compliance 61
F.5 Library Evolution 82

List of FiguRes

A.1 Syntax for source. 3
A.2 Statics for source. 4
B.1 Syntax, structures, and desugaring for target. 5
B.2 Dynamics for target. 6
C.1 Core compiler for expressions. 7
C.2 Core compiler for programs. 8
C.3 Macros for the core compiler. 8
D.1 Semantic domains. 9
D.2 Operators and relations on semantic objects. 10
D.3 Semantic predicates. 11
D.4 Standard intuitionistic logic rules. 12
D.5 Standard separation logic rules. 12
D.6 Unrestricted modality rules. 12
Authors’ Contact Information: Andrew Wagner, Northeastern University, Boston, USA, ahwagner@ccs.neu.edu; Zachary
Eisbach, Northeastern University, Boston, USA, eisbach.z@northeastern.edu; Amal Ahmed, Northeastern University,
Boston, USA, amal@ccs.neu.edu.

HTTPS://ORCID.ORG/0000-0002-9434-0780
HTTPS://ORCID.ORG/0009-0005-3028-7211
HTTPS://ORCID.ORG/0000-0001-7424-572X
https://orcid.org/0000-0002-9434-0780
https://orcid.org/0009-0005-3028-7211
https://orcid.org/0009-0005-3028-7211
https://orcid.org/0000-0001-7424-572X

2 Andrew Wagner, Zachary Eisbach, and Amal Ahmed

D.7 Later modality rules. 13
D.8 Non-standard entailments. 13
D.9 Weakest preconditions. 14
E.1 Top-level interpretations. 15
E.2 Value interpretations. 15

Realistic Realizability: Specifying ABIs You Can Count On 3

A Source
A.1 Syntax

Type ∋ T ::= Z | T1 → T2 | X
Expr ∋ e ::= x | let x = e1; e2 | n | e1 ⊕ e2 | fn f x{e} | e1 e2 | {s : e} | e.s | s e | case e1 {s x ⇒ e2 }
Ctx ∋ Γ ::= ∅ | Γ, x : T
Sig ∋ Σ ::= ∅ | Σ,m k X {s : T}
Mode ∋ m ::= rigid | flex
Kind ∋ k ::= struct | enum

Fig. A.1. Syntax for source.

4 Andrew Wagner, Zachary Eisbach, and Amal Ahmed

A.2 Statics

Σ; Γ ⊢ e : T

(sRc-stat-let)
Γ1 ⊢ e1 : T1 Γ2, x : T1 ⊢ e2 : T2 Γ2 ∌ x

Γ1, Γ2 ⊢ let x = e1; e2 : T2

(sRc-stat-vaR)
Σ; x : T ⊢ x : T

(sRc-stat-dup)
Γ ∋ x : T′ Σ; Γ, x : T′ ⊢ e : T

Σ; Γ ⊢ e : T

(sRc-stat-dRop)
Σ; Γ ⊢ e : T

Σ; Γ, x : T′ ⊢ e : T

(sRc-stat-I-Z)
∅ ⊢ n : Z

(sRc-stat-⊕-Z)
Γ1 ⊢ e1 : Z Γ2 ⊢ e2 : Z

Γ1, Γ2 ⊢ e1 ⊕ e2 : Z

(sRc-stat-I→)
Γ, zf : Ti

𝑖<𝑛 → T, x : Ti
𝑖<𝑛 ⊢ e : T Γ ∌ zf , x𝑖<𝑛 distinct

Γ ⊢ fn zf xi
𝑖<𝑛{e} : Ti

𝑖<𝑛 → T

(sRc-stat-E→)
Γ𝑖 ⊢ ei : Ti

𝑖<𝑛
Γ𝑓 ⊢ ef : Ti

𝑖<𝑛 → T

Γ𝑖
𝑖<𝑛

, Γ𝑓 ⊢ ef ei
𝑖<𝑛 : T

(sRc-stat-I-struct)
Σ ∋ rigid struct X {si : Ti

𝑖<𝑛} Σ; Γ𝑖 ⊢ ei : Ti
𝑖<𝑛

Σ; Γ𝑖
𝑖 ⊢ {si : ei

𝑖<𝑛} : X

(sRc-stat-E-struct)
Σ ∋ m struct X {si : Ti

𝑖<𝑛} Σ; Γ ⊢ e : X 𝑗 < 𝑛

Σ; Γ ⊢ e.sj : Tj

(sRc-stat-I-enum)
Σ ∋ m enum X {si : Ti

𝑖<𝑛} Σ; Γ ⊢ ej : Tj 𝑗 < 𝑛

Σ; Γ ⊢ sj ej : X

(sRc-stat-E-enum)
Σ ∋ rigid enum X {si :Ti

𝑖<𝑛} Σ; Γ1 ⊢ e : X Σ; Γ2, xi : Ti ⊢ ei : T𝑖<𝑛
Γ2 ∌ x𝑖<𝑛

Σ; Γ1, Γ2 ⊢ case e {si xi ⇒ ei } : T

Σ ⊢ T

(sRc-ty-wf-int)
Σ ⊢ Z

(sRc-ty-wf-fun)
Σ ⊢ T1 Σ ⊢ T2

Σ ⊢ T1 → T2

(sRc-ty-wf-stRuct)
Σ ∋ m struct X {−}

Σ ⊢ X

(sRc-ty-wf-enum)
Σ ∋ m enum X {−}

Σ ⊢ X

⊢ Σ

(sRc-sig-wf)
rigid struct X {s : T} ∈ Σ ⇒ Σ ⊢ T rigid enum X {s :T} ∈ Σ ⇒ Σ ⊢ T

⊢ Σ

Fig. A.2. Statics for source.

Realistic Realizability: Specifying ABIs You Can Count On 5

B Target
B.1 Syntax

Word ∋ w ::= n | null | ℓ | h
Expr ∋ e ::= x | f | w | const x = e1; e2 | e1 (e2) | e1 ⊕ e2

| if (e1) {e2} else {e3} | malloc (e) | ∗e
| ∗e1 = e2; e3 | free (e1) ; e2 | ++e | −−e

Funs ∋ F ::= ∅ | F, f (x) {e}
Ctx ∋ K ::= const x = K; e | K (e) | w1 (w2 , K, e)

| K ⊕ e | w ⊕ K | if (K) {e1} else {e2} | malloc (K)
| ∗K | ∗K = e1; e2 | ∗w = K; e | free (K) ; e | ++K | −−K

ℓ ∈ Loc ≜ ⟨id : (N + code), off : N⟩
𝜓 ∈ Sizes ≜ LocN+

fin
⇀ N+

𝜇 ∈ Mem ≜ N+ × N
fin
⇀ Word

Loc𝑋 ≜ {ℓ : Loc | ℓ .id ∈ 𝑋 }
⟨−⟩F : dom(F) inj→ Loccode
span(𝜓) ≜ [⟨𝑏, 𝑖⟩ | 𝑏 ∈ dom(𝜓) ∧ 𝑖 < 𝜓 (𝑏)]
okF (e) ≜ ∀𝑘,𝜓 ′, 𝜇′, e′ . F ⊢ (∅,∅, e) →𝑘 (𝜓 ′, 𝜇′, e′) ↛ ⇒ e′ ∈ Z ∧ 𝜇′ = ∅

null ≜ ⟨0, 0⟩
e1; e2 ≜

{
const x = e1; e2 (x does not appear free in e2)

e1 [e2] ≜ ∗(e1 + e2)
havoc ≜ malloc (−1)

J+K(n1, n2) ∈ Z ≜ 𝑛1 + 𝑛2

J=K(n1, n2) ∈ Z ≜

{
1 (𝑛1 = 𝑛2)
0 (𝑛1 ≠ 𝑛2)J+K(ℓ, n) ∈ Loc ≜

{
⟨𝑏, 𝑖 + 𝑛⟩ (ℓ = ⟨𝑏, 𝑖⟩)

Fig. B.1. Syntax, structures, and desugaring for target.

6 Andrew Wagner, Zachary Eisbach, and Amal Ahmed

B.2 Dynamics

F ⊢ (𝜓, 𝜇, e) →[ℎ] (𝜓 ′, 𝜇′, e′) Presupposes dom(𝜇) ⊆ span(𝜓)

(tRg-dyn-let)

const x = w; e →ℎ e[w/x]

(tRg-dyn-funptR)
F ∋ f (x) {e}
F ⊢ f →ℎ ⟨f⟩F

(tRg-dyn-app)
F ∋ f (x) {e}

F ⊢ ⟨f⟩F (w) →ℎ e[w/x]

(tRg-dyn-bop)
w = J⊕K(w1, w2)
w1 ⊕ w2 →ℎ w

(tRg-dyn-if-tRuthy)
w ∉ {null, 0,h}

if (w) {e1} else {e2} →ℎ e1

(tRg-dyn-if-falsy)
w ∈ {null, 0}

if (w) {e1} else {e2} →ℎ e2

(tRg-dyn-malloc)
𝑛 > 0 𝜓 ′ = 𝜓 [𝑏 ↦→ 𝑛] 𝜇′ = 𝜇 [⟨𝑏, 𝑖⟩ ↦→ h | 𝑖 < 𝑛] ℓ = ⟨𝑏, 0⟩ 𝑏 ∈ N+ \ dom(𝜓)

(𝜓, 𝜇, malloc (n)) →ℎ (𝜓 ′, 𝜇′, ℓ)

(tRg-dyn-load)
𝜇 (ℓ) = w

(𝜇, ∗ℓ) →ℎ (𝜇, w)

(tRg-dyn-stoRe)
ℓ ∈ dom(𝜇) 𝜇′ = 𝜇 [ℓ ↦→ w]
(𝜇, ∗ℓ = w; e) →ℎ (𝜇′, e)

(tRg-dyn-fRee)
ℓ = ⟨𝑏, 0⟩ 𝜓 (𝑏) = 𝑛 span(𝑏 ↦→ 𝑛) ⊆ dom(𝜇) 𝜇′ = 𝜇 \ span(𝑏 ↦→ 𝑛)

(𝜓, 𝜇, free (ℓ) ; e) →ℎ (𝜓, 𝜇′, e)

(tRg-dyn-incR)
𝜇 (ℓ) = n 𝑛′ = 𝑛 + 1 𝜇′ = 𝜇 [ℓ ↦→ 𝑛′]

(𝜇, ++ℓ) →ℎ (𝜇′, n′)

(tRg-dyn-decR)
𝜇 (ℓ) = n 𝑛′ = 𝑛 − 1 𝜇′ = 𝜇 [ℓ ↦→ 𝑛′]

(𝜇,−−ℓ) →ℎ (𝜇′, n′)

(tRg-dyn-ctx)
F ⊢ (𝜓, 𝜇, e) →ℎ (𝜓 ′, 𝜇′, e′)

F ⊢ (𝜓, 𝜇, K[e]) → (𝜓 ′, 𝜇′, K[e′])

Fig. B.2. Dynamics for target.

Realistic Realizability: Specifying ABIs You Can Count On 7

C Compiler

Σ; Γ ⊢ e : T ⇝ e ⊣ F

(comp-let)
Γ1 ⊢ e1 : T1 ⇝ e1 Γ2, x : T1 ⊢ e2 : T2 ⇝ e2 Γ2 ∌ x e = const x = e1; e2

Γ1, Γ2 ⊢ let x = e1; e2 : T2 ⇝ e
(comp-vaR)
Σ; x : T ⊢ x : T ⇝ x

(comp-dup)
Γ ∋ x : T′ Σ; Γ, x : T′ ⊢ e : T ⇝ e

Σ; Γ ⊢ e : T ⇝ dup T′ (x) ; e

(comp-dRop)
Σ; Γ ⊢ e : T ⇝ e

Σ; Γ, x : T′ ⊢ e : T ⇝ drop Σ
T′ (x) ; e

(comp-I-Z)
∅ ⊢ n : Z ⇝ n

(comp-⊕-Z)
Γ1 ⊢ e1 : Z ⇝ e1 Γ2 ⊢ e2 : Z ⇝ e2 e = e1 ⊕ e2

Γ1, Γ2 ⊢ e1 ⊕ e2 : Z ⇝ e

(comp-I→)
Γ, zf : Ti

𝑖<𝑛 → T, x : Ti
𝑖<𝑛 ⊢ e : T ⇝ e ⊣ F

Γ = yj : Tj
𝑗<𝑚

Γ ∌ zf , x𝑖<𝑛 distinct F ⊇

callk

(
zf, xi

𝑖<𝑛
) {

const yj = ∗(zf + 3 + j) ; dup Tj
(
yj

) 𝑗<𝑚
; e

}
destrk (zf)

{
const yj = ∗(zf + 3 + j) ; drop Tj

(
yj

) 𝑗<𝑚
; free (zf) ; 0

}
ef = const zf = malloc (3 + m) ; ∗zf = 1; ∗(zf + 1) = callk; ∗(zf + 2) = destrk; ∗(zf + 3 + j) = yj;

𝑗<𝑚
zf

Γ ⊢ fn zf xi
𝑖<𝑛 {e} : Ti

𝑖<𝑛 → T ⇝ ef ⊣ F

(comp-E→)
Γ𝑖 ⊢ ei : Ti ⇝ ei

𝑖<𝑛
Γ𝑓 ⊢ ef : Ti

𝑖<𝑛 → T ⇝ ef e = const xf = ef; (∗(xf + 1))
(
xf, ei

𝑖<𝑛
)

Γ𝑖
𝑖<𝑛

, Γ𝑓 ⊢ ef ei
𝑖<𝑛 : T ⇝ e

(comp-I-struct)
Σ ∋ rigid struct X {si : Ti

𝑖<𝑛 } Σ; Γ𝑖 ⊢ ei : Ti ⇝ ei
𝑖<𝑛

e = const x = malloc (n + 1) ; ∗x = 1; ∗(x + i + 1) = ei;
𝑖<𝑛

x

Σ; Γ𝑖
𝑖 ⊢ {si : ei

𝑖<𝑛 } : X ⇝ e

(comp-E-struct)
Σ ∋ m struct X {si : Ti

𝑖<𝑛 }
Σ; Γ ⊢ e : X ⇝ e 𝑗 < 𝑛 ej = const x = e; const xj = ∗

(
x + sel

sj
Σ.X + 1

)
; dup Tj

(
xj

)
; drop Σ

X (x) ; xj

Σ; Γ ⊢ e.sj : Tj ⇝ ej

(comp-I-enum)
Σ ∋ m enum X {si : Ti

𝑖<𝑛 }
Σ; Γ ⊢ ej : Tj ⇝ ej 𝑗 < 𝑛 e = const x = malloc (3) ; ∗x = 1; ∗(x + 1) = sel

sj
Σ.X ; ∗(x + 2) = ej; x

Σ; Γ ⊢ sj ej : X ⇝ e

(comp-E-enum)
Σ ∋ rigid enum X {si :Ti

𝑖<𝑛 } Σ; Γ1 ⊢ e : X ⇝ e Σ; Γ2, xi : Ti ⊢ ei : T ⇝ ei
𝑖<𝑛

Γ2 ∌ x𝑖<𝑛

e′ = const x = e; const y = ∗(x + 1) ; if (y = i)
{
const xi = ∗(x + 2) ; dup Ti (xi) ; drop Σ

X (x) ; ei

}𝑖<𝑛
else {havoc}

Σ; Γ1, Γ2 ⊢ case e {si xi ⇒ ei } : T ⇝ e′

Fig. C.1. Core compiler for expressions.

8 Andrew Wagner, Zachary Eisbach, and Amal Ahmed

Σ ⊣ F

(comp-Σ)

∀m k X {si : Ti
𝑖<𝑛} ∈ Σ. m = rigid ∧ F ⊇

{
destrX (r)

{
destr Σ

X (r)
}
, selsi

X ()
{
sel si

Σ.X

}𝑖<𝑛}
Σ ⊣ F

Fig. C.2. Core compiler for programs.

dup T (x) ≜

{
−1 (T = Z)
++x (otherwise)

drop Σ
T (x) ≜

{
−1 (T = Z)
const y = −−x; if (y) {y} else

{
destr Σ

T (x)
}

(otherwise)
destr Z (x) ≜ havoc
destr

T1→T2
(x) ≜ ∗(x + 2) (x)

destr Σ
X (x) ≜

{
const xi = x[i + 1]; drop Σ

Ti
(xi) ;

𝑖<𝑛
free (x) ; 0 (Σ ∋ rigid struct X {si : Ti

𝑖<𝑛})
destrX (x) (Σ ∋ flex struct X {· · ·})

destr Σ
X (x) ≜

if (x[1] = i) {
const xi = x[2]; drop Σ

Ti
(xi) ; free (x) ; 0

𝑖<𝑛

} else {havoc}
(Σ ∋ rigid enum X {si : Ti

𝑖<𝑛})

destrX (x) (Σ ∋ flex enum X {· · ·})

sel sj
Σ.X ≜

{
j (Σ ∋ rigid k X {si : Ti

𝑖<𝑛} ∧ 𝑗 < 𝑛),
selsj

X () (Σ ∋ flex k X {si : Ti
𝑖<𝑛} ∧ 𝑗 < 𝑛),

Fig. C.3. Macros for the core compiler.

Realistic Realizability: Specifying ABIs You Can Count On 9

D Logic

𝑃,𝑄, 𝑅 ∈ Prd ≜
{
𝑃 : Wld → Res → P | ∀ 𝜌,𝜔 ⊑ 𝜔+ . 𝑃 (𝜔, 𝜌) ⇒ 𝑃 (𝜔+, 𝜌)

}
A predicate on worlds and resources that is closed under world extension.

�̂�, �̂�, �̂� ∈ Prd (𝑋) ≜ 𝑋 → Prd
𝜔 ∈ Wld ≜ ⟨step : N, sizes : Sizes⟩
𝜌 ∈ Res ≜ LocN+

fin
⇀ Cell

A logical memory with two kinds of cells, which forms a tree.
𝜒 ∈ Cell ≜ unq(Word) | shr(N+,Res)

Either a unique, owned word, or a shared, reference-counted resource.
𝛾 ∈ CtxSub ≜ Var

fin
⇀ Word

𝜍 ∈ SigSub ≜ TypeName fin
⇀ DataSub

𝛿 ∈ DataSub ≜
{
𝛿 :

〈
kind : Kind, sel : Sel fin

⇀ ⟨off : N, semty : Word → Prd⟩
〉
|

∀ s1 ≠ s2 . 𝛿 .sel(s1).off ≠ 𝛿.sel(s2) .off
}

Fig. D.1. Semantic domains.

10 Andrew Wagner, Zachary Eisbach, and Amal Ahmed

𝜔1 ⊑ 𝜔2 ≜ 𝜔1 .step ≥ 𝜔2 .step ∧ 𝜔1 .sizes ⊆ 𝜔2 .sizes
World extension: step index can go down and new locations can be allocated.

▶𝜔 ≜
{
𝜔 [step := 𝑘] (𝜔.step = 𝑘 + 1)
Later: decrement the step index if possible.

𝑟1 ♯ 𝑟2 ≜ ∃ 𝑟 . 𝑟1 • 𝑟2 = 𝑟 ∧✓ 𝑟
Two resources are compatible if their composition is defined and valid.

𝑟1 ≤ 𝑟2 ≜ ∃ 𝑟0 . 𝑟0 • 𝑟1 = 𝑟2
A sub-resource is one that can be extended to the other resource.

✓ 𝜒 ≜ ⊤
𝜒1 • 𝜒2 ≜

{
shr(𝑛1 + 𝑛2, 𝜌) (𝜒1 = shr(𝑛1, 𝜌) ∧ 𝜒2 = shr(𝑛2, 𝜌))
Only shared cells can be composed; they must agree on the resource and add counts.

erase(𝜒) ≜

{
w, 𝜒 = unq(w)
n, 𝜒 = shr(𝑛,−)

Erasure of a unique logical cell to a physical one only keeps the word, while shared
logical cells keep the reference count; resource erasure handles the rest.

✓ 𝜌 ≜ ∀ (ℓ1, 𝜌1) ∈ objs(𝜌).
𝜌 ♯sh 𝜌1

∧ ∀ (ℓ2, 𝜌2) ∈ objs(𝜌). (ℓ1 = ℓ2 ∧ 𝜌1 = 𝜌2) ∨ (ℓ1 ≠ ℓ2 ∧ 𝜌1 ♯sh 𝜌2)
For a resource to be valid, any reachable object must be compatible with the root,
as well as with any other reachable object.

𝜌1 • 𝜌2 ≜

[ℓ ↦→ 𝜒 ∈ 𝜌1 | ℓ ∉ dom(𝜌2)]

⊎ [ℓ ↦→ 𝜒 ∈ 𝜌2 | ℓ ∉ dom(𝜌1)]
⊎ [ℓ ↦→ 𝜒1 • 𝜒2 | 𝜌1 (ℓ) = 𝜒1 ∧ 𝜌2 (ℓ) = 𝜒2]

(
𝜌1 ♯sh 𝜌2

)
Disjoint locations are included unchanged.
Overlapping locations must have composable cells.

erase(𝜌) ≜
{[
ℓ ↦→ erase(𝜒) | ℓ ↦→ 𝜒 ∈ 𝜌 •

(•(ℓ,𝜌ℓ) ∈objs(𝜌)𝜌ℓ
)]

(✓ 𝜌)
First, flatten the logical heap by composing the root and all objects, getting the
total counts. Then erase the flat heap (without recurring).

objs(𝜌) ≜
[
(ℓ, 𝜌ℓ) | 𝜌 —♦ ℓ ↦→ shr(−, 𝜌ℓ)

]
Collects the reachable objects (shared resources).

𝜌1 ♯sh 𝜌2 ≜ ∀ ℓ ∈ dom(𝜌1) ∩ dom(𝜌2) . 𝜌1 (ℓ) ♯ 𝜌2 (ℓ)
Shallow or weak compatibility; doesn’t check recursively. Used to define validity above.

𝜌 —♦ 𝜌′ 𝜌 can reach 𝜌′ via jumps or discarding cells.

(—♦-jump)
ℓ ↦→ shr(−, 𝜌) —♦ 𝜌

(—♦-sub)
𝜌1 ≥ 𝜌2

𝜌1 —♦ 𝜌2

(—♦-tRans)
𝜌1 —♦ 𝜌2 𝜌2 —♦ 𝜌3

𝜌1 —♦ 𝜌3

Fig. D.2. Operators and relations on semantic objects.

Realistic Realizability: Specifying ABIs You Can Count On 11

ℓ ↦→ w (𝜔, 𝜌) ≜ 𝜌 = ℓ ↦→ unq(w)
Points-to predicate only identifies unique cells.

size (ℓ, 𝑛) (𝜔, 𝜌) ≜ 𝜌 = ∅ ∧ ∃𝑏. ℓ = ⟨𝑏, 0⟩ ∧ 𝜔.sizes(𝑏) = 𝑛
Asserts ℓ is a head pointer to a block of size 𝑛, without any ownership.

⌜𝑃⌝ (𝜔, 𝜌) ≜ 𝜌 = ∅ ∧ 𝑃
Lifts propositions from the meta-logic.

@ℓ 𝑃 (𝜔, 𝜌) ≜ ∃ 𝜌𝑝 . 𝜌 = ℓ ↦→ shr(1, 𝜌𝑝) ∧ 𝑃 (𝜔, 𝜌𝑝)
Jump modality: asserts ℓ shares a res. satisfying 𝑃 , and confers 1 share of the count.

⋄𝑃 (𝜔, 𝜌) ≜ ∃ 𝜌𝑝 . 𝜌 —♦ 𝜌𝑝 ∧ 𝑃 (𝜔, 𝜌𝑝)
Reachable modality: asserts a res. satisfying 𝑃 is reachable from the current res.

! 𝑃 (𝜔, 𝜌) ≜ 𝜌 = ∅ ∧ 𝑃 (𝜔,∅)
Persistence modality: 𝑃 but without owning anything.

▷ 𝑃 (𝜔, 𝜌) ≜ 𝜔.step = 0 ∨ (𝜔.step > 0 ∧ 𝑃 (▶𝜔, 𝜌))
Later modality: out of steps or 𝑃 holds one step later.

wpF (e) {�̂�} (𝜔, 𝜌) ≜

∀𝜔+ ⊒ 𝜔, 𝜌 𝑓 ♯ 𝜌, 𝑘 < 𝜔+ .step,𝜓 ′, 𝜇′, e′,

𝜓 = 𝜔+ .sizes, 𝜔 ′ =
〈
step : 𝜔+ .step − 𝑘, sizes : 𝜓 ′〉 .

F ⊢ (𝜓, erase(𝜌 • 𝜌 𝑓), e) →𝑘 (𝜓 ′, 𝜇′, e′) ↛
⇒ ∃ 𝜌′ ♯ 𝜌 𝑓 .

𝜓 ′ ⊇ 𝜓

∧ erase(𝜌′ • 𝜌 𝑓) = 𝜇′

∧ e′ ∈ Word
∧ �̂� (e′)(𝜔 ′, 𝜌′)

Weakest precondition modality: e is safe to run with the current res.,
and if it halts within the given step budget, it preserves arbitrary frames,
respects the world order, and terminates at a state and value satisfying �̂� .

emp (𝜔, 𝜌) ≜ 𝜌 = ∅
𝑃 ★𝑄 (𝜔, 𝜌) ≜ ∃ 𝜌𝑝 , 𝜌𝑞 . 𝜌 = 𝜌𝑝 • 𝜌𝑞 ∧ 𝑃 (𝜔, 𝜌𝑝) ∧𝑄 (𝜔, 𝜌𝑞)
𝑃 —★𝑄 (𝜔, 𝜌) ≜ ∀𝜔+ ⊒ 𝜔, 𝜌𝑝 ♯ 𝜌, 𝜌𝑞 . 𝜌 • 𝜌𝑝 = 𝜌𝑞 ⇒ 𝑃 (𝜔+, 𝜌𝑝) ⇒ 𝑄 (𝜔+, 𝜌𝑞)
⊤ (𝜔, 𝜌) ≜ ⊤
⊥ (𝜔, 𝜌) ≜ ⊥
𝑃 ∧ 𝑄 (𝜔, 𝜌) ≜ 𝑃 (𝜔, 𝜌) ∧𝑄 (𝜔, 𝜌)
𝑃 ∨ 𝑄 (𝜔, 𝜌) ≜ 𝑃 (𝜔, 𝜌) ∨𝑄 (𝜔, 𝜌)
𝑃 ⇒ 𝑄 (𝜔, 𝜌) ≜ ∀𝜔+ ⊒ 𝜔. 𝑃 (𝜔+, 𝜌) ⇒ 𝑄 (𝜔+, 𝜌)
∀ 𝑃 (𝜔, 𝜌) ≜ ∀𝜔+ ⊒ 𝜔, 𝑥 . 𝑃 (𝑥) (𝜔+, 𝜌)
∃ 𝑃 (𝜔, 𝜌) ≜ ∃ 𝑥 . 𝑃 (𝑥)(𝜔, 𝜌)

{𝑃} e {�̂�}F ≜ !
(
𝑃 —★ wpF (e) {�̂�}

)
𝑃 ≡ 𝑄 ≜ ! (𝑃 —★𝑄) ★ ! (𝑄 —★ 𝑃)

𝑃 ⊨ 𝑄 ≜ ∀ 𝜌,𝜔. ✓ 𝜌 ⇒ 𝑃 (𝜔, 𝜌) ⇒ 𝑄 (𝜔, 𝜌)
Entailment is only required to hold on valid resources.

Fig. D.3. Semantic predicates.

12 Andrew Wagner, Zachary Eisbach, and Amal Ahmed

(Refl)
𝑃 ⊨ 𝑃

(tRans)
𝑃 ⊨ 𝑄 𝑄 ⊨ 𝑅

𝑃 ⊨ 𝑅

(∨-R)
𝑃 ⊨ 𝑄𝑖

𝑃 ⊨ 𝑄1 ∨ 𝑄2

(∨-L)
𝑃 ⊨ 𝑅 𝑄 ⊨ 𝑅

𝑃 ∨ 𝑄 ⊨ 𝑅

(∧-R)
𝑃 ⊨ 𝑄 𝑃 ⊨ 𝑅

𝑃 ⊨ 𝑄 ∧ 𝑅
(∧-L)
𝑃1 ∧ 𝑃2 ⊨ 𝑃𝑖

(∧-mono)
𝑃1 ⊨ 𝑄1 𝑃2 ⊨ 𝑄2

𝑃1 ∧ 𝑃2 ⊨ 𝑄1 ∧ 𝑄2

(∀ -R)
∀𝑥 . 𝑃 ⊨ �̂� (𝑥)

𝑃 ⊨ ∀ �̂�

(∀ -L)
∃ 𝑥 . �̂� (𝑥) ⊨ 𝑄

∀ �̂� ⊨ 𝑄

(∃ -R)
∃ 𝑥 . 𝑃 ⊨ �̂� (𝑥)

𝑃 ⊨ ∃ �̂�

(∃ -L)
∀𝑥 . �̂� (𝑥) ⊨ 𝑄

∃ �̂� ⊨ 𝑄

Fig. D.4. Standard intuitionistic logic rules.

(emp-LR)
𝑃 ⊨⊨ 𝑃 ★ emp

(⌜−⌝-R)
𝑃

⊨ ⌜𝑃⌝

(⌜−⌝-L)
𝑃 ⇒ 𝑄 ⊨ 𝑅

⌜𝑃⌝ ★𝑄 ⊨ 𝑅
(★-com)
𝑃 ★𝑄 ⊨⊨ 𝑄 ★ 𝑃

(★-asc)
𝑃 ★ (𝑄 ★ 𝑅) ⊨⊨ (𝑃 ★𝑄) ★ 𝑅

(★-mono)
𝑃1 ⊨ 𝑄1 𝑃2 ⊨ 𝑄2

𝑃1 ★ 𝑃2 ⊨ 𝑄1 ★𝑄2

(—★-R)
𝑃 ★𝑄 ⊨ 𝑅

𝑃 ⊨ 𝑄 —★ 𝑅
(—★-L)
𝑃 ★ (𝑃 —★𝑄) ⊨ 𝑄

(—★-mono)
𝑄1 ⊨ 𝑃1 𝑃2 ⊨ 𝑄2

𝑃1 —★ 𝑃2 ⊨ 𝑄1 —★𝑄2

(—★-emp)
𝑃 ⊨⊨ emp —★ 𝑃

(—★-self)
⊨ 𝑃 —★ 𝑃

(—★-cuRRy)
(𝑃 ★𝑄) —★ 𝑅 ⊨⊨ 𝑃 —★ (𝑄 —★ 𝑅)

(★-∃)
𝑃 ★ ∃ �̂� ⊨⊨ ∃ 𝑥 . 𝑃 ★ �̂� (𝑥)

(≡-Refl)
⊨ 𝑃 ≡ 𝑃

(≡-sym)
𝑃 ≡ 𝑄 ⊨⊨ 𝑄 ≡ 𝑃

(≡-tRans)
⊨ 𝑃 ≡ 𝑄 ⊨ 𝑄 ≡ 𝑅

⊨ 𝑃 ≡ 𝑅
(≡-l)
𝑃 ★ (𝑃 ≡ 𝑄) ⊨ 𝑄

Fig. D.5. Standard separation logic rules.

(! -unR)
! 𝑃 ⊨⊨ ! 𝑃 ★ ! 𝑃

(! -∧-emp)
! 𝑃 ⊨⊨ emp ∧ 𝑃

(! -L)
! 𝑃 ⊨ 𝑃

(! -dRop)
! 𝑃 ⊨ emp

(! -idem)
! 𝑃 ⊨⊨ ! ! 𝑃

(! -mono)
𝑃 ⊨ 𝑄

! 𝑃 ⊨ !𝑄

(! -emp)
emp ⊨ ! emp

(! -⌜−⌝)
⌜𝑃⌝ ⊨ ! ⌜𝑃⌝

(! -size (−, −))
size (ℓ, 𝑛) ⊨ ! size (ℓ, 𝑛)

(! -{−} − {−})
{𝑃} e {�̂�} ⊨ ! {𝑃} e {�̂�}

(! -≡)
𝑃 ≡ 𝑄 ⊨ ! (𝑃 ≡ 𝑄)

(! -★)
! (𝑃 ★𝑄) ⊨⊨ ! 𝑃 ★ !𝑄

(! -∧)
! (𝑃 ∧ 𝑄) ⊨⊨ ! 𝑃 ∧ !𝑄

(! -∧1)
! 𝑃 ∧ 𝑄 ⊨⊨ ! (𝑃 ∧ 𝑄)

(! -∧ /★)
! (𝑃 ∧ 𝑄) ⊨⊨ ! (𝑃 ★𝑄)

(! -∀)
�̂� ∈ Prd (𝑋) 𝑋 is inhabited

!∀ �̂� ⊨⊨ ∀ ! �̂�
(! -▷)
!▷ 𝑃 ⊨ ▷ ! 𝑃

(▷ -!)
emp ∧ ▷ ! 𝑃 ⊨ !▷ 𝑃

Fig. D.6. Unrestricted modality rules.

Realistic Realizability: Specifying ABIs You Can Count On 13

(▷ -R)
𝑃 ⊨ ▷ 𝑃

(▷ -ind)
𝑃 ∧ ▷𝑄 ⊨ 𝑄

𝑃 ⊨ 𝑄

(▷ -mono)
𝑃 ⊨ 𝑄

▷ 𝑃 ⊨ ▷𝑄
(▷ -∧)
▷ (𝑃 ∧ 𝑄) ⊨⊨ ▷ 𝑃 ∧ ▷𝑄

(▷ -★)
▷ (𝑃 ★𝑄) ⊨⊨ ▷ 𝑃 ★ ▷𝑄

(▷ -—★)
▷ (𝑃 —★𝑄) ⊨ ▷ 𝑃 —★ ▷𝑄

Fig. D.7. Later modality rules.

(@ -mono)
𝑃 ⊨ 𝑄

@ℓ 𝑃 ⊨ @ℓ 𝑄
(@ -!)
@ℓ 𝑃 ★ !𝑄 ⊨⊨ @ℓ (𝑃 ★ !𝑄)

(@ -∨)
@ℓ (𝑃 ∨ 𝑄) ⊨⊨ @ℓ 𝑃 ∨ @ℓ 𝑄

(@ -∃)
@ℓ ∃ �̂� ⊨⊨ ∃ @ℓ �̂�

(@ -▷)
@ℓ ▷ 𝑃 ⊨ ▷@ℓ 𝑃

(@ -⊥)
@ℓ ⊥ ⊨ ⊥

(⋄ -R)
𝑃 ⊨⋄𝑃

(⋄ -mono)
𝑃 ⊨ 𝑄

⋄𝑃 ⊨⋄𝑄

(⋄ -bind)
𝑃 ⊨⋄𝑄

⋄𝑃 ⊨⋄𝑄
(⋄ -idem)
⋄⋄𝑃 ⊨⋄𝑃

(⋄ -@)
@ℓ 𝑃 ⊨⋄𝑃

(⋄ -dRop)
⋄ (𝑃 ★𝑄) ⊨⋄𝑃

(⋄ -!)
𝑃 ⊨⋄ !𝑄

𝑃 ⊨ 𝑃 ★ !𝑄

Fig. D.8. Non-standard entailments.

14 Andrew Wagner, Zachary Eisbach, and Amal Ahmed

(wp-Ramify)(
∀ w. �̂� (w) —★ �̂� (w)

)
★ wp (e) {�̂�} ⊨ wp (e) {�̂�}

(wp-fRame)
𝑃 ★ wp (e) {�̂�} ⊨ wp (e) {w. 𝑃 ★ �̂� (w)}

(wp-mono)
∀w. �̂� (w) ⊨ �̂� (w)

wp (e) {�̂�} ⊨ wp (e) {�̂�}
(wp-val)
�̂� (w) ⊨ wp (w) {�̂�}

(wp-bind)
wp (e) {w. wp (K[w]) {�̂�}} ⊨ wp (K[e]) {�̂�}

(wp-let)
▷ wp (e[w/x]) {�̂�} ⊨ wp (const x = w; e) {�̂�}

(wp-seq)
wp (e1) {_. ▷ wp (e2) {�̂�}} ⊨ wp (e1; e2) {�̂�}

(wp-bop)
w = J⊕K(w1, w2)

▷ �̂� (w) ⊨ wp (w1 ⊕ w2) {�̂�}

(wp-funptR)
F ∋ f (x) {e}

▷ �̂� (⟨f⟩F) ⊨ wpF (f) {�̂�}

(wp-app)
F ∋ f (x) {e}

▷ wpF

(
e[w/x]

)
{�̂�} ⊨ wpF (⟨f⟩F (w)) {�̂�}

(wp-if-t)
w ∉ {null, 0,h}

▷ wp (e1) {�̂�} ⊨ wp (if (w) {e1} else {e2}) {�̂�}

(wp-if-f)
w ∈ {null, 0}

▷ wp (e2) {�̂�} ⊨ wp (if (w) {e1} else {e2}) {�̂�}

(wp-malloc)
𝑛 > 0

▷
(
∀ LocN+ .

(
★𝑖<𝑛

(ℓ + 𝑖) ↦→ h
)
—★ size (ℓ, 𝑛) —★ �̂� (ℓ)

)
⊨ wp (malloc (n)) {�̂�}

(wp-fRee)(
★𝑖<𝑛

(ℓ + 𝑖) ↦→ wi

)
★ size (ℓ, 𝑛) ★ ▷ wp (e) {�̂�} ⊨ wp (free (ℓ) ; e) {�̂�}

(wp-load)
𝑃 ⊨⋄ ℓ ↦→ w

𝑃 ★ ▷
(
𝑃 —★ �̂� (w)

)
⊨ wp (∗ℓ) {�̂�}

(wp-stoRe)
ℓ ↦→ − ★ ▷

(
ℓ ↦→ w —★ wp (e) {�̂�}

)
⊨ wp (∗ℓ = w; e) {�̂�}

(wp-incR-own)
𝑛′ = 𝑛 + 1

ℓ ↦→ n ★ ▷
(
ℓ ↦→ n′ —★ �̂� (n′)

)
⊨ wp (++ℓ) {�̂�}

(wp-decR-own)
𝑛′ = 𝑛 − 1

ℓ ↦→ n ★ ▷
(
ℓ ↦→ n′ —★ �̂� (n′)

)
⊨ wp (−−ℓ) {�̂�}

(wp-incR-shaRe)
𝑃 ⊨⋄@ℓ 𝑄

𝑃 ★ ▷
(
∀ 𝑛 > 1. 𝑃 —★@ℓ 𝑄 —★ �̂�(n)

)
⊨ wp (++ℓ) {�̂�}

(wp-decR-shaRe)
@ℓ 𝑃 ★ ▷

(
∀ 𝑛. (⌜𝑛 > 0⌝ ∨ (⌜𝑛 = 0⌝ ★ ℓ ↦→ 0 ★ 𝑃)) —★ �̂� (n)

)
⊨ wp (−−ℓ) {�̂�}

(wp-shaRe)
ℓ ↦→ 1 ★ 𝑃 ★ (@ℓ 𝑃 —★ wp (e) {�̂�}) ⊨ wp (e) {�̂�}

(ht-app)
𝑃 ★ {𝑃} e {�̂�} ⊨ wp (e) {�̂�}

Fig. D.9. Weakest preconditions.

Realistic Realizability: Specifying ABIs You Can Count On 15

E ABI

Σ; Γ ⊨F e : T≜ ∀F′ ⊇ F, 𝜍, 𝛾 . SJΣKF′ (𝜍) ★ CJΓK𝜍F′ (𝛾) ⊨ EJTK𝜍F′ (e[𝛾])

SJΣKF (𝜍) ≜ !

©«

⌜dom(𝜍) ⊇ dom(Σ)⌝
★∀ m k X {si : Ti

𝑖<𝑛} ∈ Σ. let 𝛿 = 𝜍 (X) in

⌜𝛿.kind = k⌝

★⌜dom(𝛿.sel) ⊇ {si | 𝑖 < 𝑛}⌝
★∀ 𝑖 < 𝑛. !wpF

(〈
selsi

X
〉

F ()
)
{w. ⌜w = 𝛿.sel(si).off⌝}

★∀ 𝑖 < 𝑛, w. 𝛿 .sel(si).semty(w) ≡ ▷VJTiK𝜍F (w)
★∀ ℓ . {ℓ ↦→ 0 ★ 𝛿.obj(ℓ + 1)} ⟨destrX⟩F (ℓ) {emp}F

★⌜m = rigid ⇒ dom(𝛿.sel) ⊆ {si | 𝑖 < 𝑛} ∧ ∀ 𝑖 < 𝑛. 𝛿 .sel(si).off = 𝑖⌝

ª®®®®®®®®®®®®®®®®®®®¬
CJΓK𝜍F (𝛾) ≜ ⌜dom(𝛾) ⊇ dom(Γ)⌝ ★★x:T∈ΓVJTK𝜍F(𝛾 (x))
EJTK𝜍F (e) ≜ wpF (e) {VJTK𝜍F}

𝛿.obj(ℓ + 1) ≜

size (ℓ, 1 + |dom(𝛿.sel) |)

★★s∈dom(𝛿.sel)∃ ws .

(
ℓ + 1 + 𝛿.sel(s) .off ↦→ ws

★𝛿.sel(s) .semty(ws)

)
(𝛿.kind = struct)

size (ℓ, 3)

★
∨

s∈dom(𝛿.sel)∃ ws
©«

ℓ + 1 ↦→ 𝛿.sel(s) .off
★ℓ + 2 ↦→ ws

★𝛿.sel(s).semty(ws)

ª®®¬
(𝛿.kind = enum)

Fig. E.1. Top-level interpretations.

VJTK𝜍F (w) ≜

{
UJTK𝜍F (w) (T = Z)
⌜w ∈ Loc \ null⌝ ★ RJTK𝜍F (w) (otherwise)

RJTK𝜍F (ℓ) ≜ @ℓ OJTK𝜍F (ℓ + 1)
UJZK𝜍F (w) ≜ ⌜w ∈ Z⌝

O
r

Ti
𝑖<𝑛 → T

z𝜍
F
(ℓ + 1) ≜

∃ call, destr, Env. let Self = ℓ + 1 ↦→ ⟨call⟩F ★ ℓ + 2 ↦→ ⟨destr⟩F ★ Env in

Self

★∀ wi
𝑖<𝑛 .{★𝑖<𝑛VJTiK𝜍F (wi) ★@ℓ Self } ⟨call⟩F

(
ℓ, wi

𝑖<𝑛
)
{w. VJTK𝜍F (w)}F

★{ℓ ↦→ 0 ★ Self } ⟨destr⟩F ℓ {emp}F

OJXK𝜍F (ℓ + 1) ≜ 𝜍 (X).obj(ℓ + 1)

Fig. E.2. Value interpretations.

16 Andrew Wagner, Zachary Eisbach, and Amal Ahmed

F Proofs
F.1 Domains

Lemma F.1 (Cell Composition Commutative). Composition of Cell is commutative:

𝜒1 • 𝜒2 = 𝜒2 • 𝜒1

PRoof. Suppose we have 𝜒1, 𝜒2 such that 𝜒1 • 𝜒2 is defined, meaning 𝜒1 = shr(𝑛1, 𝜌) and
𝜒2 = shr(𝑛2, 𝜌). Then 𝜒2 • 𝜒1 is defined as well, and 𝜒1 • 𝜒2 = shr(𝑛1 + 𝑛2, 𝜌) = 𝜒2 • 𝜒1 by the
commutativity of addition. □

Lemma F.2 (Res Composition Commutative). Composition of Res is commutative:

𝜌1 • 𝜌2 = 𝜌2 • 𝜌1

PRoof. Suppose we have 𝜌1, 𝜌2 such that 𝜌1 • 𝜌2 is defined, meaning 𝜌1 ♯sh 𝜌2
(H1) .

By unfolding • and observing the symmetry of the definition, it remains to show:
• 𝜌2 ♯sh 𝜌1

(G1)

• [ℓ ↦→ 𝜒1 • 𝜒2 | 𝜌1 (ℓ) = 𝜒1 ∧ 𝜌2 (ℓ) = 𝜒2] = [ℓ ↦→ 𝜒2 • 𝜒1 | 𝜌2 (ℓ) = 𝜒2 ∧ 𝜌1 (ℓ) = 𝜒1] (G2)

Unfolding ♯sh and using H1, it suffices to prove 𝜌2 (ℓ) ♯ 𝜌1 (ℓ) ⇔ 𝜌1 (ℓ) ♯ 𝜌2 (ℓ). Since 𝜌1 (ℓ) and
𝜌2 (ℓ) are both Cell, we can use Cell Composition Commutative alongside the definition of ♯ to
prove G1, meaning 𝜌2 • 𝜌1 is defined.
The two maps in G2 have the same domain, so again applying Cell Composition Commutative

solves G2. □

Lemma F.3 (Cell Composition Associative). Composition of Cell is associative:
(𝜒1 • 𝜒2) • 𝜒3 = 𝜒1 • (𝜒2 • 𝜒3)

PRoof. Suppose we have 𝜒1, 𝜒2, 𝜒3 such that the relevant compositions are defined. This means
𝜒1 = shr(𝑛1, 𝜌), 𝜒2 = shr(𝑛2, 𝜌), and 𝜒3 = shr(𝑛3, 𝜌), for some 𝜌 ∈ Res and 𝑛1, 𝑛2, 𝑛3 ∈ N+.
By definition, we have (𝜒1 • 𝜒2) • 𝜒3 = shr(𝑛1 + 𝑛2 + 𝑛3, 𝜌) = 𝜒1 • (𝜒2 • 𝜒3), using the

associativity of addition. □

Lemma F.4 (Res Composition Associative). Composition of Res is associative:
(𝜌1 • 𝜌2) • 𝜌3 = 𝜌1 • (𝜌2 • 𝜌3)

PRoof. Supposewe have 𝜌1, 𝜌2, 𝜌3 such that the relevant compositions are defined. By the defini-
tion of •, the domain of the resultingmap in both cases is exactly𝐷 = dom(𝜌1)∪dom(𝜌2)∪dom(𝜌3).
We proceed by cases, analyzing which domains each each ℓ ↦→ 𝜒 ∈ 𝐷 came from, using the fact
that disjoint locations are included unchanged when resources are composed:

(1) Consider a location in the domain of exactly one of the three resources; with almost no
loss of generality suppose ℓ ↦→ 𝜒1 ∈ dom(𝜌1) and is in the the domain of neither 𝜌2 nor
𝜌3. In that case, ℓ ↦→ 𝜒1 ∈ 𝜌1 • 𝜌2 as well as (𝜌1 • 𝜌2) • 𝜌3, by definition. Similarly,
ℓ ↦→ 𝜒1 ∈ 𝜌1 • (𝜌2 • 𝜌3) after first composing 𝜌2 and 𝜌3 (neither of which contain ℓ), so
the two maps agree on ℓ

(2) Consider a location in the domain of exactly two of the three resources; with almost no
loss of generality suppose ℓ ∈ dom(𝜌1) ∧ dom(𝜌2) with 𝜌1 (ℓ) = 𝜒1 and 𝜌2 (ℓ) = 𝜒2. When
we compose 𝜌1 • 𝜌2, we have ℓ ↦→ 𝜒1 • 𝜒2 in the resulting map, which is left unchanged
when we compose it with 𝜌3. Similarly, when we compose 𝜌2 • 𝜌3, ℓ is left unchanged;
when we then compose 𝜌1 • (𝜌2 • 𝜌3) once again get ℓ ↦→ 𝜒1 • 𝜒2, so the two maps agree
on ℓ .

Realistic Realizability: Specifying ABIs You Can Count On 17

(3) Finally, consider a location ℓ in the domain of all three resources, with:
• 𝜌1 (ℓ) = 𝜒1

(H1)

• 𝜌2 (ℓ) = 𝜒2
(H2)

• 𝜌3 (ℓ) = 𝜒3
(H3)

When we compose 𝜌1 • 𝜌2 first, we get ℓ ↦→ 𝜒1 • 𝜒2, and composing 𝜌3 gives us ℓ ↦→ (𝜒1 •
𝜒2) • 𝜒3. Similarly, when we compose 𝜌2 • 𝜌3 first, then 𝜌1, we get ℓ ↦→ 𝜒1 • (𝜒2 • 𝜒3). By
Cell Composition Associative, these are the same and the maps agree with each other on
ℓ .

Since each location in𝐷 is in one, two, or all three of the composite domains, and the two composed
maps agree with each other in every case, the two maps are in fact equal. □

Lemma F.5 (Res Composition Unit). The empty map is a unit for Res composition:

𝜌 • ∅ = 𝜌

PRoof. Let 𝜌 be an arbitrary resource. Since dom(𝜌) ∩ dom(∅) is empty, 𝜌 ♯sh ∅ holds vacu-
ously.

Unfolding the definition of • and using the fact that nothing is in dom(∅), we have
• [ℓ ↦→ 𝜒 ∈ 𝜌 | ℓ ∉ dom(∅)] = 𝜌 (H1)

• [ℓ ↦→ 𝜒 ∈ ∅ | ℓ ∉ dom(𝜌)] = ∅(H2)

• [ℓ ↦→ 𝜒1 • 𝜒2 | 𝜌 (ℓ) = 𝜒1 ∧ ∅(ℓ) = 𝜒2] = ∅(H3)

The disjoint union of these three smaller maps make up 𝜌 • ∅, which therefore is exactly 𝜌 . □

Lemma F.6 (Reachable Extension InvaRiance).
𝜌1 —♦ 𝜌 ⇒ 𝜌1 ≤ 𝜌2 ⇒ 𝜌2 —♦ 𝜌

PRoof. Suppose we have 𝜌 , 𝜌1, and 𝜌2 such that 𝜌1 —♦ 𝜌 and 𝜌1 ≤ 𝜌2. By —♦-sub, we have
𝜌2 —♦ 𝜌1 from 𝜌1 ≤ 𝜌2. When paired with 𝜌1 —♦ 𝜌 , we conclude 𝜌2 —♦ 𝜌 using —♦-tRans. □

Lemma F.7 (Unie Extension InvaRiance).
𝜌1 (ℓ) = unq(w) ⇒ 𝜌1 ≤ 𝜌2 ⇒ 𝜌2 (ℓ) = unq(w)

PRoof. Suppose we have 𝜌1 (ℓ) = unq(w), denoted 𝜒1. Unfolding ≤, there exists a 𝜌0 such that
𝜌0 • 𝜌1 = 𝜌2. Let us denote 𝜌0 (ℓ) = 𝜒0.
If ℓ ∉ dom(𝜌0), then 𝜌2 will map ℓ ↦→ unq(w) by •, and the proof is complete.
If ℓ ∈ dom(𝜌0), we derive a contradiction. Note that 𝜌0 • 𝜌1 is defined, meaning 𝜌0 ♯sh 𝜌1. Since

ℓ ∈ dom(𝜌0) ∩ dom(𝜌1) in this case, unfolding ♯sh tells us 𝜒0 ♯ 𝜒1. However, this requires 𝜒0 • 𝜒1
to be defined, which cannot be the case since 𝜒1 = unq(w). □

Lemma F.8 (ShaRed Extension Monotonicity).
𝜌1 (ℓ) = shr(𝑛1, 𝜌ℓ) ⇒ 𝜌1 ≤ 𝜌2 ⇒ ∃𝑛2 ≥ 𝑛1 . 𝜌2 (ℓ) = shr(𝑛2, 𝜌ℓ)

PRoof. Suppose we have 𝜌1 (ℓ) = shr(𝑛1, 𝜌ℓ), denoted 𝜒1. Unfolding ≤, there exists a 𝜌0 such
that 𝜌0 • 𝜌1 = 𝜌2. Let us denote 𝜌0 (ℓ) = 𝜒0.
If ℓ ∉ dom(𝜌0), then 𝜌2 will map ℓ ↦→ shr(𝑛1, 𝜌ℓ) by •, and the proof is complete with 𝑛2 = 𝑛1.
If ℓ ∈ dom(𝜌0), then 𝜌2 will map ℓ ↦→ 𝜒0 • 𝜒1 by •, which is defined since 𝜌0 ♯sh 𝜌1 (as

𝜌0 • 𝜌1 is defined). Since 𝜒1 = shr(𝑛1, 𝜌ℓ), unfolding • for Cell tells us 𝜒0 = shr(𝑛0, 𝜌ℓ). Therefore,
𝜒0 • 𝜒1 = shr(𝑛0 + 𝑛1, 𝜌ℓ), and there exists 𝑛2 = 𝑛0 + 𝑛1. Since 𝑛0 ∈ N+, 𝑛2 ≥ 𝑛1 as required. □

Lemma F.9 (Compatability Extension Antitonicity).
𝜌2 ♯sh 𝜌 ⇒ 𝜌1 ≤ 𝜌2 ⇒ 𝜌1 ♯sh 𝜌

18 Andrew Wagner, Zachary Eisbach, and Amal Ahmed

PRoof. Suppose we have 𝜌 , 𝜌1, and 𝜌2 such that 𝜌2 ♯sh 𝜌 and 𝜌1 ≤ 𝜌2. Unfolding ♯sh, we must
show that for some ℓ ∈ dom(𝜌1) ∩ dom(𝜌), we have 𝜌1 (ℓ) ♯ 𝜌 (ℓ) (G1) .
To do so, first observe ℓ ∈ dom(𝜌2), from 𝜌1 ≤ 𝜌2 by unfolding ≤ and subsequently •. This,

along with ℓ ∈ dom(𝜌) lets us instantiate 𝜌2 ♯sh 𝜌 with ℓ , giving us 𝜌2 (ℓ) ♯ 𝜌 (ℓ). Since these are
both Cell, unfolding ♯ and subsequently • tells us that for some 𝑛1, 𝑛2, and 𝜌 ′,

• 𝜌2 (ℓ) = shr(𝑛2, 𝜌 ′) (H1)
• 𝜌 (ℓ) = shr(𝑛1, 𝜌 ′) (H2)

To prove G1, unfolding ♯ tells us that wemust prove that 𝜌1 (ℓ) • 𝜌 (ℓ) is defined; if it is, it is aCell
which is trivially valid. Since 𝜌 (ℓ) = shr(𝑛1, 𝜌 ′) fromH2,wemust only prove that 𝜌1 (ℓ) = shr(𝑛, 𝜌 ′)
for some 𝑛.

To do so, suppose otherwise. Then, applying either Unie Extension InvaRiance or ShaRed
ExtensionMonotonicitywould contradict H1, since 𝜌1 ≤ 𝜌2.Therefore, having 𝜌1 (ℓ) = shr(𝑛, 𝜌 ′)
is the onlyway for 𝜌2 (ℓ) to be shr(𝑛2, 𝜌 ′), whichwe knowmust be the case.Thismeans 𝜌1 (ℓ) • 𝜌 (ℓ)
is defined, solving G1 and completing the proof. □

Lemma F.10 (Valid Extension Antitonicity).

✓ 𝜌2 ⇒ 𝜌1 ≤ 𝜌2 ⇒ ✓ 𝜌1

PRoof. Suppose we have 𝜌1 and 𝜌2 such that ✓ 𝜌2 and 𝜌1 ≤ 𝜌2. Unfolding ✓ , we must show,
for arbitrary (ℓ ′, 𝜌 ′), (ℓ ′′, 𝜌 ′′) ∈ objs(𝜌1),

• 𝜌1 ♯sh 𝜌 ′ (G1)

• (ℓ ′ = ℓ ′′ ∧ 𝜌 ′ = 𝜌 ′′) ∨ (ℓ ′ ≠ ℓ ′′ ∧ 𝜌 ′ ♯sh 𝜌 ′′) (G2)

In order to use information from ✓ 𝜌2, we first must show (ℓ ′, 𝜌 ′), (ℓ ′′, 𝜌 ′′) ∈ objs(𝜌2).
For arbitrary (ℓ, 𝜌) ∈ objs(𝜌1), unfolding objs tells us 𝜌1 —♦ ℓ ↦→ shr(−, 𝜌). Since 𝜌1 ≤ 𝜌2, we

have 𝜌2 —♦ ℓ ↦→ shr(−, 𝜌) from Reachable Extension InvaRiance, so (ℓ, 𝜌) ∈ objs(𝜌2) as well.
Instantiating ✓ 𝜌2 with (ℓ ′, 𝜌 ′), (ℓ ′′, 𝜌 ′′), which are both in objs(𝜌2) from above, gives us

• 𝜌2 ♯sh 𝜌 ′ (H1)

• (ℓ ′ = ℓ ′′ ∧ 𝜌 ′ = 𝜌 ′′) ∨ (ℓ ′ ≠ ℓ ′′ ∧ 𝜌 ′ ♯sh 𝜌 ′′) (H2)

H2 immediately solves G2. To solve G1, apply Compatability Extension Antitonicity with
H1 and 𝜌1 ≤ 𝜌2. □

Lemma F.11 (Res CRoss-Split).

𝜌1 • 𝜌2 = 𝜌3 • 𝜌4 ⇒ ∃ 𝜌13, 𝜌14, 𝜌23, 𝜌24.
𝜌13 • 𝜌14 = 𝜌1 ∧ 𝜌23 • 𝜌24 = 𝜌2 ∧
𝜌13 • 𝜌23 = 𝜌3 ∧ 𝜌14 • 𝜌24 = 𝜌4

PRoof. Suppose we have 𝜌1, 𝜌2, 𝜌3, 𝜌4 such that 𝜌1 • 𝜌2 = 𝜌3 • 𝜌4, which we denote 𝜌 . Ob-
serve by unfolding • that dom(𝜌) = dom(𝜌1) ∪ dom(𝜌2) = dom(𝜌3) ∪ dom(𝜌4). To construct
𝜌13, 𝜌14, 𝜌23, 𝜌24, we consider each ℓ ∈ dom(𝜌) separately and proceed by cases; by observingwhich
domains the location is in, we determine how each sub-resource should handle that location:

(1) If ℓ is in dom(𝜌1) or dom(𝜌2), or vice-versa, but not in dom(𝜌3) or dom(𝜌4), then 𝜌1 • 𝜌2 ≠
𝜌3 • 𝜌4 by the definition of •, a contradiction.

(2) Suppose ℓ is in exactly one of dom(𝜌1), dom(𝜌2) and exactly one of dom(𝜌3), dom(𝜌4).
Without loss of generality, say ℓ ∈ dom(𝜌1), dom(𝜌3) and ℓ ∉ dom(𝜌2), dom(𝜌4). We there-
fore must have ℓ ∉ dom(𝜌14), dom(𝜌23), dom(𝜌24). Since 𝜌 (ℓ) = 𝜌1 (ℓ) = 𝜌3 (ℓ) by unfolding
•, we can set 𝜌13 (ℓ) = 𝜌 (ℓ). This way, (𝜌13 • 𝜌14) (ℓ) = 𝜌1 (ℓ) and (𝜌13 • 𝜌23)(ℓ) = 𝜌3 (ℓ).

Realistic Realizability: Specifying ABIs You Can Count On 19

Note that all unq(−) resources must fall into this case, as we cannot compose unique Cells,
but the composition is defined.

(3) Suppose ℓ is in exactly three of the four possible domains. Without loss of generality, con-
sider ℓ ∈ dom(𝜌1), dom(𝜌2), dom(𝜌3) but ℓ ∉ dom(𝜌4). We therefore must have
ℓ ∉ dom(𝜌14), dom(𝜌24). Observe 𝜌 (ℓ) = (𝜌1 • 𝜌2)(ℓ) = 𝜌3 (ℓ). Note that this Cell must
be shared, otherwise the composition would be undefined. We can set 𝜌13 (ℓ) = 𝜌1 (ℓ) and
𝜌23 (ℓ) = 𝜌2 (ℓ). This way, (𝜌13 • 𝜌23) (ℓ) = (𝜌1 • 𝜌2)(ℓ) = 𝜌3 (ℓ), as intended. Also, since
ℓ ∉ dom(𝜌14), dom(𝜌24), we have (𝜌13 • 𝜌14) (ℓ) = 𝜌1 (ℓ) and (𝜌23 • 𝜌24) (ℓ) = 𝜌2 (ℓ).

(4) Finally, consider when ℓ is in all four domains. Unfolding •, it must be the case that 𝜌 (ℓ) =
(𝜌1 • 𝜌2)(ℓ) = (𝜌3 • 𝜌4)(ℓ) = shr(𝑛, 𝜌ℓ), noting that the Cell must be shared for the
composition to be defined. Unfolding • again, we have
• 𝜌1 (ℓ) = shr(𝑛1, 𝜌ℓ) (H1)
• 𝜌2 (ℓ) = shr(𝑛2, 𝜌ℓ) (H2)
• 𝜌3 (ℓ) = shr(𝑛3, 𝜌ℓ) (H3)
• 𝜌4 (ℓ) = shr(𝑛4, 𝜌ℓ) (H4)

where 𝑛1 + 𝑛2 = 𝑛3 + 𝑛4 = 𝑛, or equivalently 𝑛1 − 𝑛3 = 𝑛4 − 𝑛2. We must find a way to split
these reference counts across 𝜌13, 𝜌14, 𝜌23, 𝜌24. Without loss of generality, the differences
above are non-negative, since if they were, we can swap their order. In this case, 𝑛1 ≥ 𝑛3
and 𝑛4 ≥ 𝑛2.
Let us set 𝜌13 (ℓ) = shr(𝑛3, 𝜌ℓ), 𝜌24 (ℓ) = shr(𝑛2, 𝜌ℓ), and ℓ ∉ dom(𝜌23). If 𝑛4 − 𝑛2 = 𝑛1 − 𝑛3
is positive, set 𝜌14 (ℓ) = shr(𝑛4 − 𝑛2, 𝜌ℓ) = shr(𝑛1 − 𝑛3, 𝜌ℓ); otherwise, ℓ ∉ dom(𝜌14) since
the reference count must be in N+. We now confirm each of the four compositions agrees
with the resources above:
• If 𝑛1 − 𝑛3 is positive, (𝜌13 • 𝜌14) (ℓ) = shr(𝑛3 + (𝑛1 − 𝑛3), 𝜌ℓ) = shr(𝑛1, 𝜌ℓ) = 𝜌1 (ℓ). If
𝑛1 − 𝑛3 = 0, then 𝑛1 = 𝑛3 and (𝜌13 • 𝜌14)(ℓ) = shr(𝑛3, 𝜌ℓ) = shr(𝑛1, 𝜌ℓ) = 𝜌1 (ℓ).

• (𝜌23 • 𝜌24)(ℓ) = shr(𝑛2, 𝜌ℓ) = 𝜌2 (ℓ)
• (𝜌13 • 𝜌23)(ℓ) = shr(𝑛3, 𝜌ℓ) = 𝜌3 (ℓ)
• If 𝑛4 − 𝑛2 is positive, (𝜌14 • 𝜌24) (ℓ) = shr((𝑛4 − 𝑛2) + 𝑛2, 𝜌ℓ) = shr(𝑛4, 𝜌ℓ) = 𝜌4 (ℓ). If
𝑛4 − 𝑛2 = 0, then 𝑛2 = 𝑛4 and (𝜌14 • 𝜌24)(ℓ) = shr(𝑛2, 𝜌ℓ) = shr(𝑛4, 𝜌ℓ) = 𝜌4 (ℓ).

□

Lemma F.12 (Wld Extension PaRtial ORdeR). Wld is partially ordered by ⊑.

PRoof. Immediate from the definitions of Wld and ⊑, since ≥ partially ordersN and ⊆ partially
orders Sizes. □

Lemma F.13 (Reachability Object SubResouRce).
𝜌1 —♦ 𝜌2 ⇒ 𝜌2 ≤ 𝜌1 ∨ ∃ (ℓ, 𝜌) ∈ objs(𝜌1). 𝜌2 ≤ 𝜌

PRoof. We proceed by induction on the derivation of —♦.
Case —♦-jump

(—♦-jump)
ℓ2 ↦→ shr(−, 𝜌2) —♦ 𝜌2

Here, 𝜌1 = ℓ2 ↦→ shr(−, 𝜌2). This means that (ℓ2, 𝜌2) ∈ objs(𝜌1), since 𝜌1 —♦ ℓ2 ↦→ shr(−, 𝜌2)
by reflexivity (since 𝜌1 ≥ 𝜌1). Noting that 𝜌2 ≤ 𝜌2 trivially completes the proof.

Case —♦-sub
(—♦-sub)
𝜌1 ≥ 𝜌2

𝜌1 —♦ 𝜌2

20 Andrew Wagner, Zachary Eisbach, and Amal Ahmed

𝜌2 ≤ 𝜌1 by the rule’s premise.
Case —♦-tRans

(—♦-tRans)
𝜌1 —♦ 𝜌0 𝜌0 —♦ 𝜌2

𝜌1 —♦ 𝜌2
By the inductive hypothesis, either
• 𝜌2 ≤ 𝜌0

(H1) , or
• ∃ (ℓ ′, 𝜌 ′) ∈ objs(𝜌0). 𝜌2 ≤ 𝜌 ′ (H2)

If we have H2 by unfolding objs we have 𝜌0 —♦ ℓ ′ ↦→ shr(−, 𝜌 ′). This means that (ℓ ′, 𝜌 ′) ∈
objs(𝜌1), noting 𝜌1 —♦ 𝜌0 —♦ ℓ ′ ↦→ shr(−, 𝜌 ′), which, when paired with 𝜌2 ≤ 𝜌 ′, completes
the proof in this case.
Otherwise, we have H1. We can apply the inductive hypothesis to the other premise to
obtain that either
• 𝜌0 ≤ 𝜌1

(H3) , or
• ∃ (ℓ ′′, 𝜌 ′′) ∈ objs(𝜌1). 𝜌0 ≤ 𝜌 ′′ (H4)

If we have H3, then 𝜌2 ≤ 𝜌0 ≤ 𝜌1 and we are done by H1 and the transitivity of ≤.
Otherwise, we have H4. There therefore exists (ℓ ′′, 𝜌 ′′) ∈ objs(𝜌1) with 𝜌2 ≤ 𝜌0 ≤ 𝜌 ′′,
again using H1 and the transitivity of ≤ to complete the proof.

□

Lemma F.14 (Valid Reachability Monotonicity).

✓ 𝜌1 ⇒ 𝜌1 —♦ 𝜌2 ⇒ ✓ 𝜌2

PRoof. Suppose we have 𝜌1 and 𝜌2 such that ✓ 𝜌1 and 𝜌1 —♦ 𝜌2. Unfolding ✓ , we must show,
for some (ℓ ′, 𝜌 ′), (ℓ ′′, 𝜌 ′′) ∈ objs(𝜌2),

• 𝜌2 ♯sh 𝜌 ′ (G1)

• (ℓ ′ = ℓ ′′ ∧ 𝜌 ′ = 𝜌 ′′) ∨ (ℓ ′ ≠ ℓ ′′ ∧ 𝜌 ′ ♯sh 𝜌 ′′) (G2)

In order to use information from ✓ 𝜌1, we first must show (ℓ ′, 𝜌 ′), (ℓ ′′, 𝜌 ′′) ∈ objs(𝜌1).
For arbitrary (ℓ, 𝜌) ∈ objs(𝜌2), unfolding objs tells us 𝜌2 —♦ ℓ ↦→ shr(−, 𝜌). Since 𝜌1 —♦ 𝜌2, we

have 𝜌1 —♦ 𝜌2 —♦ ℓ ↦→ shr(−, 𝜌) so (ℓ, 𝜌) ∈ objs(𝜌1) as well by transitivity.
Instantiating ✓ 𝜌1 with (ℓ ′, 𝜌 ′), (ℓ ′′, 𝜌 ′′), which are both in objs(𝜌1) from above, gives us

• 𝜌1 ♯sh 𝜌 ′ (H1)

• (ℓ ′ = ℓ ′′ ∧ 𝜌 ′ = 𝜌 ′′) ∨ (ℓ ′ ≠ ℓ ′′ ∧ 𝜌 ′ ♯sh 𝜌 ′′) (H2)

H2 immediately solves G2. To solve G1, we first invoke Reachability Object SubResouRce
with 𝜌1 —♦ 𝜌2 to obtain either

• 𝜌2 ≤ 𝜌1
(H3) , or

• ∃ (ℓ, 𝜌) ∈ objs(𝜌1). 𝜌2 ≤ 𝜌 (H4)

If we have H3, then applying Compatability Extension Antitonicity with H1 and H3 solves
G1.

Otherwise, let (ℓ, 𝜌) ∈ objs(𝜌1) with 𝜌2 ≤ 𝜌 . By Compatability Extension Antitonicity, it
suffices to show that 𝜌 ♯sh 𝜌 ′. Instantiating ✓ 𝜌1 with (ℓ, 𝜌), (ℓ ′, 𝜌 ′) gives us

• 𝜌1 ♯sh 𝜌 (H5)

• (ℓ = ℓ ′ ∧ 𝜌 = 𝜌 ′) ∨ (ℓ ≠ ℓ ′ ∧ 𝜌 ♯sh 𝜌 ′) (H6)

If ℓ ≠ ℓ ′ ∧ 𝜌 ♯sh 𝜌 ′, we are done. We prove that this must be the case by deriving a contradiction
from ℓ = ℓ ′ ∧ 𝜌 = 𝜌 ′.

Realistic Realizability: Specifying ABIs You Can Count On 21

By H4 and—♦-sub, 𝜌 —♦ 𝜌2. But since (ℓ ′, 𝜌 ′) = (ℓ, 𝜌) ∈ objs(𝜌2), we have 𝜌2 —♦ ℓ ↦→ shr(−, 𝜌).
By transitivity, this means (ℓ, 𝜌) ∈ objs(𝜌). This is a contradiction, as the relation defined by
containment in another resource’s objs is well-founded, which is evident from its definition. Note
that each element in objs(𝜌) is reached by taking a non-zero number of steps through the resource
graph of 𝜌 , which must be a finitely constructable tree (since Res is an inductive data type). □

Lemma F.15 (Unie Reachability ERasuRe).
𝜌2 (ℓ) = unq(w) ⇒ 𝜌1 —♦ 𝜌2 ⇒ ✓ 𝜌1 ⇒ erase(𝜌1) (ℓ) = w

PRoof. Suppose we have 𝜌1 and 𝜌2 such that
• 𝜌2 (ℓ) = unq(w) (H1)
• 𝜌1 —♦ 𝜌2 (H2)
• ✓ 𝜌1

(H3)

To prove erase(𝜌1) (ℓ) = w, by unfolding erase(−) of Res and Cell, it suffices to prove that
• ℓ ↦→ unq(w) ∈ 𝜌1 •

(•(ℓ ′,𝜌ℓ ′) ∈objs(𝜌1)𝜌ℓ ′
) (G1) .

Applying Reachability Object SubResouRce with H2, we have either
• 𝜌2 ≤ 𝜌1

(H4) , or
• ∃ (ℓ ′, 𝜌 ′) ∈ objs(𝜌1). 𝜌2 ≤ 𝜌 ′ (H5)

If 𝜌2 ≤ 𝜌1, then 𝜌1 (ℓ) = unq(w) by applying Unie Extension InvaRiance with H1. Equiv-
alently, ℓ ↦→ unq(w) ∈ 𝜌1

(H6) . Since the composition in G1 is defined due to H3, we know that
ℓ ∉ dom(𝜌ℓ ′) for any (ℓ ′, 𝜌ℓ ′) ∈ objs(𝜌1). If it were, then composing the two resources would
require composing unq(w) with another cell, which cannot be done. This means composing the
rest of 𝜌1’s objects does not change H6, proving G1.
If we instead have H5, then following the same reasoning from above, we deduce 𝜌 ′ (ℓ) = w, or

equivalently ℓ ↦→ unq(w) ∈ 𝜌 ′ (H7) . Composing 𝜌 ′ with 𝜌1 and the other (ℓ ′, 𝜌ℓ ′) ∈ objs(𝜌1) does
not change H7 like above, again proving G1. □

Lemma F.16 (Unie Domain Exclusion).
𝜌 ♯ ℓ ↦→ unq(−) ⇒ ℓ ∉ dom(𝜌) ∧ ∀ (ℓ1, 𝜌1) ∈ objs(𝜌). ℓ ∉ dom(𝜌1)

PRoof. Suppose we have 𝜌 with 𝜌 ♯ ℓ ↦→ unq(−). Unfolding ♯, the composition 𝜌 • ℓ ↦→
unq(−) = 𝜌 ′ must be defined and valid. From this, we deduce ℓ ∉ dom(𝜌), since if it were, we
would have to compose unq(−) with another cell, which cannot be done. Therefore, ℓ ∉ dom(𝜌)

Unfolding objs, we observe that objs(𝜌 ′) = objs(𝜌). This means for any (ℓ1, 𝜌1) ∈ objs(𝜌), we
can instantiate✓ 𝜌 ′ to obtain 𝜌 ′ ♯sh 𝜌1 If ℓ ∈ dom(𝜌1), unfolding ♯sh would require 𝜌 ′ (ℓ) • unq(−),
which like above cannot be done. Therefore, ℓ ∉ dom(𝜌1) either. □

Lemma F.17 (Unie Update Compatibility).
𝜌 ♯ ℓ ↦→ unq(−) ⇒ 𝜌 ♯ ℓ ↦→ unq(w)

PRoof. Suppose we have 𝜌 with 𝜌 ♯ ℓ ↦→ unq(−). Let us call their composition 𝜌 ′, which is
defined and valid by ♯. Applying Unie Domain Exclusion tells us that

• ℓ ∉ dom(𝜌) (H1)
• ∀ (ℓ1, 𝜌1) ∈ objs(𝜌). ℓ ∉ dom(𝜌1) (H2)

From H1, we deduce that 𝜌 • ℓ ↦→ unq(w) = 𝜌w is defined with 𝜌w = ℓ ⊎ [ℓ ↦→ unq(w)].
To prove ✓ 𝜌 ′, unfold ✓ and let (ℓ1, 𝜌1), (ℓ2, 𝜌2) ∈ objs(𝜌w). It suffices to prove that

• 𝜌w ♯sh 𝜌1
(G1)

22 Andrew Wagner, Zachary Eisbach, and Amal Ahmed

• (ℓ1 = ℓ2 ∧ 𝜌1 = 𝜌2) ∨ (ℓ1 ≠ ℓ2 ∧ 𝜌1 ♯sh 𝜌2) (G2)

To do so, first observe objs(𝜌w) = objs(𝜌) = objs(𝜌 ′) by unfolding objs. This means that we can
instantiate ✓ 𝜌 ′ with (ℓ1, 𝜌1) and (ℓ2, 𝜌2) to solve G2.
To solve G1, we must prove that ∀ ℓ ′ ∈ dom(𝜌w) ∩ dom(𝜌1) we have 𝜌w (ℓ ′) ♯ 𝜌1 (ℓ ′). Applying

H2, ℓ ∉ 𝜌1 so any such ℓ ′ must be in dom(𝜌) specifically. By observing 𝜌w (ℓ ′) = 𝜌 (ℓ ′) in this case,
the proof obligation can be re-folded into 𝜌 ♯sh 𝜌1

(G3) .
To solve this, we deduce ✓ 𝜌 by applying Valid Extension Antitonicity with 𝜌 ≤ 𝜌 ′ and

✓ 𝜌 ′. Instantiating this with (ℓ1, 𝜌1) solves G3 and completes the proof. □

Lemma F.18 (Unie ERasuRe SepaRability).

𝜌 ♯ ℓ ↦→ unq(w) ⇒ erase(𝜌 • ℓ ↦→ unq(w)) = erase(𝜌) ⊎ [ℓ ↦→ w]

PRoof. Suppose we have 𝜌 with 𝜌 ♯ ℓ ↦→ unq(w). Unfolding ♯, the composition 𝜌 • ℓ ↦→ unq(w)
must be defined and valid; set this to be 𝜌 ′. Applying Unie Domain Exclusion tells us that
ℓ ∉ dom(𝜌) and ∀ (ℓ1, 𝜌1) ∈ objs(𝜌). ℓ ∉ dom(𝜌1).
With this, and the observation that objs(𝜌 ′) = objs(𝜌), which follows from unfolding objs, we

can inspect erase(𝜌 • ℓ ↦→ unq(w)) = erase(𝜌 ′) to deduce

erase(𝜌 ′) =
[
ℓ ↦→ erase(𝜒) | ℓ ↦→ 𝜒 ∈ 𝜌 ′ •

(•(ℓ1,𝜌1) ∈objs(𝜌 ′)𝜌1
)]

=
[
ℓ ↦→ erase(𝜒) | ℓ ↦→ 𝜒 ∈ (𝜌 • ℓ ↦→ unq(w)) •

(•(ℓ1,𝜌1) ∈objs(𝜌)𝜌1
)]

=
[
ℓ ↦→ erase(𝜒) | ℓ ↦→ 𝜒 ∈ 𝜌 •

(•(ℓ1,𝜌1) ∈objs(𝜌)𝜌1
)]

⊎ [ℓ ↦→ erase(unq(w))]
= erase(𝜌) ⊎ [ℓ ↦→ w]

□

Lemma F.19 (Object Composition).

𝜌1 ♯ 𝜌2 ⇒ objs(𝜌1 • 𝜌2) = objs(𝜌1) ∪ objs(𝜌2)

PRoof. Suppose we have 𝜌1 and 𝜌2 with 𝜌1 ♯ 𝜌2. To prove the equality above, we can do so in
two steps:

• objs(𝜌1 • 𝜌2) ⊆ objs(𝜌1) ∪ objs(𝜌2) (G1)
• objs(𝜌1 • 𝜌2) ⊇ objs(𝜌1) ∪ objs(𝜌2) (G2)

To prove G2, let (ℓ, 𝜌ℓ) ∈ objs(𝜌1) ∪ objs(𝜌2). without loss of generality, suppose (ℓ, 𝜌ℓ) ∈
objs(𝜌1). Unfolding objs, this means 𝜌1 —♦ ℓ ↦→ shr(−, 𝜌ℓ). But since 𝜌1 • 𝜌2 —♦ 𝜌1 by —♦-sub,
(ℓ, 𝜌ℓ) ∈ objs(𝜌1 • 𝜌2) by applying —♦-tRans.
To prove G1, let (ℓ, 𝜌ℓ) ∈ objs(𝜌1 • 𝜌2). Unfolding objs, this means 𝜌1 • 𝜌2 —♦ ℓ ↦→ shr(−, 𝜌ℓ). It

suffices to show that at least one of 𝜌1 —♦ ℓ ↦→ shr(−, 𝜌ℓ) or 𝜌2 —♦ ℓ ↦→ shr(−, 𝜌ℓ) must be true.
To do so, we can induct on —♦ with a strengthened inductive hypothesis that will imply the

property above. Specifically, we prove that 𝜌1 • 𝜌2 —♦ 𝜌 implies 𝜌1 —♦ 𝜌 , 𝜌2 —♦ 𝜌 , or 𝜌1 • 𝜌2 ≥ 𝜌 .
Case —♦-jump

(—♦-jump)
𝜌1 • 𝜌2 = ℓ ↦→ shr(−, 𝜌) —♦ 𝜌

Unfolding •, we have three slightly different cases to consider. Note that ℓ is the only lo-
cation in dom(𝜌1) ∪ dom(𝜌2), since dom(𝜌1 • 𝜌2) = {ℓ}. If ℓ ∈ dom(𝜌1) and ℓ ∉ dom(𝜌2),
then 𝜌2 = ∅ and 𝜌1 = ℓ ↦→ shr(𝑛, 𝜌), so 𝜌1 —♦ 𝜌 by —♦-jump. Similarly, if ℓ ∉ dom(𝜌1) and
ℓ ∈ dom(𝜌2), we have 𝜌2 —♦ 𝜌 .

Realistic Realizability: Specifying ABIs You Can Count On 23

Finally, if ℓ ∈ dom(𝜌1) and ℓ ∈ dom(𝜌2), then shr(𝑛, 𝜌) = 𝜌1 (ℓ) • 𝜌2 (ℓ). This composition
is defined, since 𝜌1 ♯ 𝜌2. Therefore 𝜌1 = ℓ ↦→ shr(𝑛1, 𝜌) and 𝜌2 = ℓ ↦→ shr(𝑛2, 𝜌) for some
𝑛1 + 𝑛2 = 𝑛, recalling that no other locations may be in their domains. In this case, both
𝜌1 —♦ 𝜌 and 𝜌2 —♦ 𝜌 by —♦-jump.

Case —♦-sub
(—♦-sub)
𝜌1 • 𝜌2 ≥ 𝜌

𝜌1 • 𝜌2 —♦ 𝜌
By the premise, 𝜌1 • 𝜌2 ≥ 𝜌 .

Case —♦-tRans
(—♦-tRans)
𝜌1 • 𝜌2 —♦ 𝜌 ′ 𝜌 ′ —♦ 𝜌

𝜌1 • 𝜌2 —♦ 𝜌
Applying our inductive hypothesis on 𝜌1 • 𝜌2 —♦ 𝜌 ′, we have one of
• 𝜌1 —♦ 𝜌 ′ (H1)
• 𝜌2 —♦ 𝜌 ′ (H2)
• 𝜌1 • 𝜌2 ≥ 𝜌 ′ (H3)

If we have H1, then 𝜌1 —♦ 𝜌 ′ —♦ 𝜌 and we are done by applying —♦-tRans. Similarly, if we
have H2, 𝜌2 —♦ 𝜌 ′ —♦ 𝜌 .
If we have H3, then by ≥ there must exist some 𝜌 ′′ such that 𝜌1 • 𝜌2 = 𝜌 ′ • 𝜌 ′′. Now, apply
Res CRoss-Split to guarantee the existence of 𝜌 ′1 ≤ 𝜌1 and 𝜌 ′2 ≤ 𝜌2 such that 𝜌 ′ = 𝜌 ′1 • 𝜌 ′2.
This allows us to apply our inductive hypothesis on 𝜌 ′ = 𝜌 ′1 • 𝜌 ′2 —♦ 𝜌 to obtain one of
• 𝜌 ′1 —♦ 𝜌

(H4)

• 𝜌 ′2 —♦ 𝜌
(H5)

• 𝜌 ′1 • 𝜌 ′2 ≥ 𝜌 (H6)

If we have H4, then 𝜌1 —♦ 𝜌 ′1 —♦ 𝜌 , recalling that 𝜌1 ≥ 𝜌 ′1 and applying —♦-sub. Similarly, if
we have H5, then 𝜌2 —♦ 𝜌 ′2 —♦ 𝜌 . Finally, if we have H6, then combining it with H3 gives us
(𝜌1 • 𝜌2) ≥ 𝜌 ′ = 𝜌 ′1 • 𝜌 ′2 ≥ 𝜌 . By transitivity, 𝜌1 • 𝜌2 ≥ 𝜌 , completing the case.

Since 𝜌1 • 𝜌2 —♦ ℓ ↦→ shr(−, 𝜌ℓ), we now have one of
• 𝜌1 —♦ ℓ ↦→ shr(−, 𝜌ℓ) (H7)
• 𝜌2 —♦ ℓ ↦→ shr(−, 𝜌ℓ) (H8)
• 𝜌1 • 𝜌2 ≥ ℓ ↦→ shr(−, 𝜌ℓ) (H9)

If H7 holds, then (ℓ, 𝜌ℓ) ∈ objs(𝜌1) by definition. Similarly, if H8 holds, then (ℓ, 𝜌ℓ) ∈ objs(𝜌2). If
𝜌1 • 𝜌2 ≥ ℓ ↦→ shr(−, 𝜌ℓ), then there exists some 𝜌 ′ such that 𝜌1 • 𝜌2 = ℓ ↦→ shr(−, 𝜌ℓ) • 𝜌 ′ by ≥.
Unfolding •, we observe that ℓ must be in the domain of at least one of 𝜌1 or 𝜌2. By 𝜌1 ♯ 𝜌2 and
unfolding✓ , such a location in either domain must be mapped to a cell of the form shr(−, 𝜌ℓ). This
is exactly the condition for (ℓ, 𝜌ℓ) to be in objs(𝜌1) or objs(𝜌2), depending on which domains ℓ is
in. It is important to note that objs does not depend on the reference count of the shared cell. □

Lemma F.20 (Unie ShaRed ConveRtibility).

𝜌 𝑓 ♯ (ℓ ↦→ unq(−) • 𝜌) ⇒ 𝜌 𝑓 ♯ (ℓ ↦→ shr(−, 𝜌))

PRoof. To prove 𝜌 𝑓 ♯ (ℓ ↦→ shr(−, 𝜌)), we must prove that the composition 𝜌 𝑓 • (ℓ ↦→
shr(−, 𝜌)) is both defined and valid.
To prove that the composition is defined, we first rewrite 𝜌 𝑓 ♯ (ℓ ↦→ unq(−) • 𝜌) as 𝜌 𝑓 • 𝜌 ♯

ℓ ↦→ unq(−) by unfolding and re-folding ♯ (using both Res Composition Associative and Res

24 Andrew Wagner, Zachary Eisbach, and Amal Ahmed

Composition Commutative). From Unie Domain Exclusion, this means ℓ ∉ dom(𝜌 𝑓 • 𝜌)
and therefore is not in dom(𝜌 𝑓). Thus, 𝜌 𝑓 • (ℓ ↦→ shr(−, 𝜌)) is defined.
To prove ✓ (𝜌 𝑓 • (ℓ ↦→ shr(−, 𝜌))), we must prove for arbitrary (ℓ1, 𝜌1), (ℓ2, 𝜌2) ∈ objs(𝜌 𝑓 •

ℓ ↦→ shr(−, 𝜌)), that
• 𝜌 𝑓 • (ℓ ↦→ shr(−, 𝜌)) ♯sh 𝜌1

(G1)

• (ℓ1 = ℓ2 ∧ 𝜌1 = 𝜌2) ∨ (ℓ1 ≠ ℓ2 ∧ 𝜌1 ♯sh 𝜌2) (G2)

To do so, we would like to use ✓ (𝜌 𝑓 • (ℓ ↦→ unq(−) • 𝜌)), which we will denote 𝜌 ′. Note first
objs(𝜌 ′) = objs(𝜌 𝑓 • ℓ ↦→ unq(−) • 𝜌)

= objs(𝜌 𝑓 • 𝜌)
Next, observe that objs(ℓ ↦→ shr(−, 𝜌)) = objs(𝜌) ∪ (ℓ, 𝜌). We have (ℓ, 𝜌) ∈ objs(ℓ ↦→ shr(−, 𝜌))

by definition, and all other reachable objects must pass through 𝜌 itself, so are therefore in objs(𝜌).
Using Object Composition, we thus have

objs(𝜌 𝑓 • ℓ ↦→ shr(−, 𝜌)) = objs(𝜌 𝑓) ∪ objs(𝜌) ∪ (ℓ, 𝜌)
= objs(𝜌 𝑓 • 𝜌) ∪ (ℓ, 𝜌)
= objs(𝜌 ′) ∪ (ℓ, 𝜌)

We first prove G2. Observe that if (ℓ1, 𝜌1), (ℓ2, 𝜌2) ∈ objs(𝜌 ′), then instantiating ✓ 𝜌 ′ solves the
goal. Similarly, if (ℓ1, 𝜌1) = (ℓ2, 𝜌2) = (ℓ, 𝜌), we are done by definition.

Otherwise, without loss of generality let (ℓ1, 𝜌1) = (ℓ, 𝜌) and (ℓ2, 𝜌2) ∈ objs(𝜌 ′). From Unie
Domain Exclusion with 𝜌 ′, ℓ ≠ ℓ2, so it remains to prove 𝜌 ♯sh 𝜌2. To do so, instantiate ✓ 𝜌 ′ with
(ℓ2, 𝜌2) to get 𝜌 ′ ♯sh 𝜌2. Since 𝜌 ≤ 𝜌 ′, applying Compatability Extension Antitonicity solves
G2.

Next, we prove G1. Like above, we consider the case where (ℓ1, 𝜌1) ∈ objs(𝜌 ′) and (ℓ1, 𝜌1) =
(ℓ, 𝜌) separately. First, suppose (ℓ1, 𝜌1) ∈ objs(𝜌 ′). Unfolding ♯sh, we must prove

• ∀ ℓ ′ ∈ dom(𝜌 𝑓 • ℓ ↦→ shr(−, 𝜌)) ∩ dom(𝜌1). (𝜌 𝑓 • ℓ ↦→ shr(−, 𝜌)) (ℓ ′) ♯sh 𝜌1 (ℓ) (G3)

Since ℓ ∉ dom(𝜌1) from UnieDomain Exclusion, any such ℓ ′ must be in dom(𝜌 𝑓) as well. Also,
for such ℓ ′, (𝜌 𝑓 • ℓ ↦→ shr(−, 𝜌))(ℓ ′) = 𝜌 𝑓 (ℓ ′). Therefore, the condition above reduces to proving
𝜌 𝑓 ♯sh 𝜌1. To prove this, instantiate ✓ 𝜌 ′ with (ℓ1, 𝜌1) to obtain 𝜌 ′ ♯sh 𝜌1, and use Compatability
Extension Antitonicity with 𝜌 𝑓 ≤ 𝜌 ′.
Finally, if (ℓ1, 𝜌1) = (ℓ, 𝜌), it remains to prove that 𝜌 𝑓 • ℓ ↦→ shr(−, 𝜌) ♯sh 𝜌 . Following similar

reasoning to above, noting that ℓ ∉ dom(𝜌), this reduces to 𝜌 𝑓 ♯sh 𝜌 . Since 𝜌 𝑓 ♯ (ℓ ↦→ unq(−) • 𝜌),
we have 𝜌 𝑓 ♯ 𝜌 as well by unfolding and re-folding ♯. This implies 𝜌 𝑓 ♯sh 𝜌 , since their composition
can only be defined when 𝜌 𝑓 (ℓ ′) ♯ 𝜌 (ℓ ′) for any ℓ ′ in both domains. □

Lemma F.21 (ShaRed Object ERasuRe).
✓ 𝜌 ⇒ (ℓ1, 𝜌1) ∈ objs(𝜌) ⇒ 𝜌1 (ℓ) = shr(𝑛, 𝜌ℓ) ⇒

(erase(𝜌)(ℓ) = n ∧ ℓ ∉ dom(𝜌) ∧ (∀ (ℓ ′, 𝜌 ′) ∈ objs(𝜌). (ℓ ′, 𝜌 ′) ≠ (ℓ1, 𝜌1) ⇒ ℓ ∉ dom(𝜌 ′)))
∨ (erase(𝜌)(ℓ) > n ∧ (ℓ ∈ dom(𝜌) ∨ (∃ (ℓ ′, 𝜌 ′) ∈ objs(𝜌). (ℓ ′, 𝜌 ′) ≠ (ℓ1, 𝜌1) ∧ ℓ ∈ dom(𝜌 ′))))
PRoof. Suppose we have 𝜌 , 𝜌1, and ℓ such that

• ✓ 𝜌 (H1)

• (ℓ1, 𝜌1) ∈ objs(𝜌) (H2)
• 𝜌1 (ℓ) = shr(𝑛, 𝜌ℓ) (H3)

To prove the disjunction above, we can unfold erase(𝜌) and study the underlying map:

erase(𝜌) =
[
ℓ0 ↦→ erase(𝜒) | ℓ0 ↦→ 𝜒 ∈ 𝜌 •

(•(ℓ ′,𝜌 ′) ∈objs(𝜌)𝜌
′
)]

Realistic Realizability: Specifying ABIs You Can Count On 25

Specifically, we can study the composition 𝜌 •
(•(ℓ ′,𝜌 ′) ∈objs(𝜌)𝜌

′) , which we denote 𝜌flat. Since
we have✓ 𝜌 , this composition must be defined. FromH2 and H3, we must have 𝜌flat (ℓ) of the form
shr(𝑛′, 𝜌ℓ).
Whenever we have ℓ ∈ dom(𝜌), we must have 𝜌 (ℓ) = shr(𝑛𝜌 , 𝜌ℓ), where 𝑛𝜌 ∈ N+. Similarly,

for any (ℓ ′, 𝜌 ′) ∈ objs(𝜌) we have 𝜌 (ℓ) = shr(𝑛𝜌 ′ , 𝜌ℓ) with 𝑛𝜌 ′ ∈ N+. Otherwise, the composition
would not be defined.

Note that (ℓ1, 𝜌1) ∈ objs(𝜌) by H2. If ℓ is in dom(𝜌) or in dom(𝜌 ′) for some (ℓ ′, 𝜌 ′) ≠ (ℓ1, 𝜌1)
from objs(𝜌), then when we compose everything together to get 𝜌flat, we have 𝑛′ > 𝑛, since we
start with shr(𝑛, 𝜌ℓ) from 𝜌1 and add some positive integer whenwe compose the relevant resource.
This proves the right disjunct, since we get erase(𝜌)(ℓ) = n′ > n when we erase.

Otherwise, ℓ ∉ dom(𝜌), and the only (ℓ ′, 𝜌 ′) ∈ objs(𝜌) with ℓ ∈ dom(𝜌 ′) is exactly (ℓ1, 𝜌1). This
means that when we compose everything, ℓ never changes from shr(𝑛, 𝜌ℓ). When we erase the
resulting 𝜌flat, we therefore must get erase(𝜌) (ℓ) = n′ = n, which proves the left disjunct. □

Lemma F.22 (ShaRed SubResouRce ERasuRe).
✓ 𝜌 ⇒ 𝜌 = 𝜌1 • 𝜌2 ⇒ 𝜌1 (ℓ) = shr(𝑛, 𝜌ℓ) ⇒

(erase(𝜌) (ℓ) = n ∧ ℓ ∉ dom(𝜌2) ∧ (∀ (ℓ ′, 𝜌 ′) ∈ objs(𝜌). ℓ ∉ dom(𝜌 ′)))
∨ (erase(𝜌) (ℓ) > n ∧ (ℓ ∈ dom(𝜌2) ∨ (∃ (ℓ ′, 𝜌 ′) ∈ objs(𝜌). ℓ ∈ dom(𝜌 ′))))

PRoof. The proof proceeds similarly to that of ShaRed Object ERasuRe above. Suppose we
have 𝜌 , 𝜌1, 𝜌2, and ℓ such that

• ✓ 𝜌 (H1)

• 𝜌1 • 𝜌2 = 𝜌 (H2)

• 𝜌1 (ℓ) = shr(𝑛, 𝜌ℓ) (H3)

Unfold erase(𝜌) and denote the underlying composition 𝜌1 • 𝜌2 •
(•(ℓ ′,𝜌 ′) ∈objs(𝜌)𝜌

′) as 𝜌flat.
This composition must be defined, by H1.
Since 𝜌1 (ℓ) = shr(𝑛, 𝜌ℓ), we must have 𝜌flat (ℓ) of the form shr(n′, 𝜌ℓ) for some 𝑛′ ∈ 𝑁𝑁 +. If

ℓ ∉ dom(𝜌2), and for all (ℓ ′, 𝜌 ′) ∈ objs(𝜌), ℓ ∉ dom(𝜌 ′), then composing 𝜌1 with all of 𝜌2 •(•(ℓ ′,𝜌 ′) ∈objs(𝜌)𝜌
′) leaves ℓ untouched, meaning n′ = n. In this scenario, left disjunct holds.

Otherwise, we either have ℓ ∈ dom(𝜌2), or there must be some (ℓ ′, 𝜌 ′) ∈ objs(𝜌) where ℓ ∈
dom(𝜌 ′). In that case, n′ > n, since when we compose 𝜌1 with all of 𝜌2 •

(•(ℓ ′,𝜌 ′) ∈objs(𝜌)𝜌
′) , the

reference count of the shared resource is incremented at least once by some positive integer. In
this scenario, the right disjunct holds. □

Lemma F.23 (ShaRed Reachability ERasuRe).
𝜌2 (ℓ) = shr(𝑛2, 𝜌ℓ) ⇒ 𝜌1 —♦ 𝜌2 ⇒ ✓ 𝜌1 ⇒ ∃𝑛1 ≥ 𝑛2. erase(𝜌1) (ℓ) = n1

PRoof. By using Reachability Object SubResouRce, we can apply ShaRed Object ERasuRe
and ShaRed SubResouRce ERasuRe to characterize the the erasure of reachable objects.This proof
does not use those lemmas to their full strength, as the information provided about domains is not
necessary here.

Suppose we have 𝜌1, 𝜌2 such that
• 𝜌2 (ℓ) = shr(𝑛2, 𝜌ℓ) (H1)
• 𝜌1 —♦ 𝜌2 (H2)
• ✓ 𝜌1

(H3)

Instantiate Reachability Object SubResouRce with H2 to give us either
• 𝜌2 ≤ 𝜌1

(H4)

• 𝜌2 ≤ 𝜌 (H5) where (ℓ, 𝜌) ∈ objs(𝜌1)

26 Andrew Wagner, Zachary Eisbach, and Amal Ahmed

If we haveH4, instantiate ShaRed SubResouRce ERasuRe usingH3, H4, andH1, noting that 𝜌2 ≤
𝜌1 guarantees the existence of some 𝜌3 such that 𝜌1 = 𝜌2 • 𝜌3 as required. Set 𝑛1 = erase(𝜌) (ℓ);
we are done, since in either case, 𝑛1 ≥ 𝑛2.

Alternatively, if we have H5, then from 𝜌2 ≤ 𝜌 and H1, we note ℓ ∈ dom(𝜌). Unfolding •, 𝜌 (ℓ)
is of the form shr(𝑛′, 𝜌ℓ) where 𝑛′ ≥ 𝑛2. Now, we apply ShaRed Object ERasuRe with H3, H5, and
the prior remark. Set 𝑛1 = erase(𝜌)(ℓ); we are done, since in either case, 𝑛1 ≥ 𝑛′ ≥ 𝑛2. □

Lemma F.24 (ShaRed Reachability IncRementability).

𝜌2 (ℓ) = shr(−, 𝜌ℓ) ⇒ 𝜌1 —♦ 𝜌2 ⇒ ✓ 𝜌1 ⇒ 𝜌1 ♯ (ℓ ↦→ shr(𝑛, 𝜌ℓ))

PRoof. Suppose we have 𝜌1, 𝜌2, and ℓ such that
• 𝜌2 (ℓ) = shr(−, 𝜌ℓ) (H1)
• 𝜌1 —♦ 𝜌2 (H2)
• ✓ 𝜌1

(H3)

To prove 𝜌1 ♯ (ℓ ↦→ shr(𝑛, 𝜌ℓ)), we must prove that their composition is both defined and valid.
First, we prove 𝜌1 ♯ (ℓ ↦→ shr(𝑛, 𝜌ℓ)) is defined. If ℓ ∉ dom(𝜌1), the composition is defined trivially.
Otherwise, by Reachability Object SubResouRce, we either have

• 𝜌2 ≤ 𝜌1
(H4) , or

• 𝜌2 ≤ 𝜌0
(H5) for some (ℓ0, 𝜌0) ∈ objs(𝜌1)

If we have H4, then applying ShaRed Extension Monotonicity tells us 𝜌1 (ℓ) = shr(−, 𝜌ℓ).
This form ensures the composition is defined.

Otherwise, we have H4. Apply ShaRed Extension Monotonicity again to obtain 𝜌0 (ℓ) =
shr(−, 𝜌ℓ). Now, instantiating H3 with (ℓ0, 𝜌0) tells us 𝜌0 ♯sh 𝜌1. Unfolding ♯sh, since ℓ ∈ dom(𝜌1)
and ℓ0 (ℓ) = shr(−, 𝜌ℓ), we have 𝜌0 (ℓ) ♯ 𝜌1 (ℓ). This can only be the case when 𝜌1 (ℓ) is also of the
form shr(−, 𝜌ℓ), meaning the composition is defined in this case too.

Now, we prove the composition is valid. To do so, take two arbitrary (ℓ ′, 𝜌 ′), (ℓ ′′, 𝜌 ′′) ∈ objs(𝜌1 •
ℓ ↦→ shr(𝑛, 𝜌ℓ)). We must prove the following:

• 𝜌 ′ ♯sh 𝜌1 • ℓ ↦→ shr(𝑛, 𝜌ℓ) (G1)

• (ℓ ′ = ℓ ′′ ∧ 𝜌 ′ = 𝜌 ′′) ∨ (ℓ ′ ≠ ℓ ′′ ∧ 𝜌 ′ ♯sh 𝜌 ′′) (G2)

From Object Composition, objs(𝜌1 • ℓ ↦→ shr(𝑛, 𝜌ℓ)) = objs(𝜌1) ∪ objs(ℓ ↦→ shr(𝑛, 𝜌ℓ)).
Unfolding objs, we observe (ℓ, 𝜌ℓ) ∈ objs(ℓ ↦→ shr(𝑛, 𝜌ℓ)) unsurprisingly. Every other object
reachable from ℓ ↦→ shr(𝑛, 𝜌ℓ) must necessarily pass through 𝜌ℓ .

We now prove objs(𝜌1) ∪ objs(ℓ ↦→ shr(𝑛, 𝜌ℓ)) = objs(𝜌1) by proving objs(ℓ ↦→ shr(𝑛, 𝜌ℓ)) ⊆
objs(𝜌1). Take some (ℓ0, 𝜌0) ∈ objs(ℓ ↦→ shr(𝑛, 𝜌ℓ)). By the observations above, there are only two
cases to consider:

(1) If (ℓ0, 𝜌0) = (ℓ, 𝜌ℓ), then we have 𝜌1 —♦ 𝜌2 —♦ ℓ ↦→ shr(−, 𝜌ℓ) and (ℓ0, 𝜌0) ∈ objs(𝜌1)
(2) If (ℓ0, 𝜌0) ∈ objs(𝜌ℓ), then we have similarly have 𝜌1 —♦ 𝜌2 —♦ 𝜌ℓ —♦ ℓ0 ↦→ shr(−, 𝜌0) and

(ℓ0, 𝜌0) ∈ objs(𝜌1)
This allows us to instantiate ✓ 𝜌1 with (ℓ ′, 𝜌 ′), (ℓ ′′, 𝜌 ′′) which solves G2. Furthermore, we learn

𝜌 ′ ♯sh 𝜌1
(H6) , which wewill use to prove G1. To do so, unfold ♯sh and consider an arbitrary location

ℓ𝑑 in dom(𝜌 ′) ∩ dom(𝜌1 • ℓ ↦→ shr(𝑛, 𝜌ℓ)). If ℓ ∈ dom(𝜌1), then 𝜌 ′ (ℓ𝑑) ♯ (𝜌1 • ℓ ↦→ shr(𝑛, 𝜌ℓ)) (ℓ𝑑)
follows from H6, with 𝜌1 ♯ (ℓ ↦→ shr(𝑛, 𝜌ℓ)).
The only remaining location that may not be in dom(𝜌1) is ℓ itself. If ℓ ∈ dom(𝜌 ′) but ℓ ∉

dom(𝜌1), it suffices to show 𝜌 ′ (ℓ) ♯ shr(𝑛, 𝜌ℓ) to complete the proof. This holds exactly when 𝜌 ′ (ℓ)
is of the form shr(−, 𝜌ℓ) Apply Reachability Object SubResouRce with 𝜌1 —♦ 𝜌2 again, but note
𝜌2 ≤ 𝜌1 is not possible since ℓ ∉ dom(𝜌1). This guarantees the existence of some (ℓ3, 𝜌3) ∈ objs(𝜌1)

Realistic Realizability: Specifying ABIs You Can Count On 27

such that 𝜌2 ≤ 𝜌3. By ShaRed Extension Monotonicity, 𝜌3 (ℓ) = shr(−, 𝜌ℓ). Instantiating ✓ 𝜌1
with (ℓ ′, 𝜌 ′) and (ℓ3, 𝜌3) gives us either

• ℓ ′ = ℓ3 ∧ 𝜌 ′ = 𝜌3
(H8) or

• ℓ ′ ≠ ℓ3 ∧ 𝜌 ′ ♯sh 𝜌3
(H8)

If we have H8, then 𝜌 ′ (ℓ) = 𝜌3 (ℓ) = shr(−, 𝜌ℓ) and 𝜌 ′ (ℓ) is of the proper form. Otherwise, 𝜌 ′ ♯sh
𝜌3 guarantees 𝜌 ′ (ℓ) is of the proper form as well, by unfolding ♯sh and noting ℓ ∈ dom(𝜌 ′) ∩
dom(𝜌3). □

F.2 Logic
Lemma F.25 (PRedicate Monotonicity). For all 𝑃 defined in Fig. D.3,

𝑃 (𝜔, 𝜌) ⇒ 𝜔 ⊑ 𝜔+ ⇒ 𝑃 (𝜔+, 𝜌)

PRoof. Note that the definition of Prd imposes a monotonicity requirement; this lemma ensures
the atomics and connectives defined are in fact predicates. To do so, we prove that each atomic is
monotone, then prove that each connective is monotone, assuming its composite predicates are
already. Most of the atomic cases are trivial, with the monotonicity of most connectives following
either from the monotonicity of the connected predicates, or by definition. We highlight a variety
of cases below:

Case size (ℓ, 𝑛) From size (ℓ, 𝑛) (𝜔, 𝜌), we have 𝜌 = ∅, so it suffices to prove ∃𝑏. ℓ = ⟨𝑏, 0⟩ ∧
𝜔+.sizes(𝑏) = 𝑛. Unfolding size (ℓ, 𝑛), there exists ℓ = ⟨𝑏, 0⟩ with 𝜔.sizes(𝑏) = 𝑛; by
𝜔.sizes ⊆ 𝜔+ .sizes, we are done.

Case⋄𝑃 From ⋄𝑃 , we have ∃ 𝜌𝑝 . 𝜌 —♦ 𝜌𝑝 , so it suffices to prove 𝑃 (𝜔+, 𝜌𝑝). Unfolding ⋄ ,
we have 𝑃 (𝜔, 𝜌𝑝); 𝑃 ’s monotonicity completes the proof.

Case ! 𝑃 Unfolding ! , we have 𝜌 = ∅ ∧ 𝑃 (𝜔,∅). To prove ! 𝑃 (𝜔+, 𝜌), it suffices to prove
𝑃 (𝜔+,∅), since 𝜌 = ∅. This follows immediately from the monotonicity of 𝑃 .

Case ▷ 𝑃 Unfolding ▷ , we have 𝜔.step = 0 ∨ (𝜔.step > 0 ∧ 𝑃 (▶𝜔, 𝜌)). If 𝜔+.step = 0, we
are done. Otherwise, it suffices to prove 𝑃 (▶𝜔+, 𝜌).
Note that if 𝜔+.step > 0, then 𝜔.step > 0 as well, since 𝜔.step ≥ 𝜔+.step > 0. This means
we know 𝑃 (▶𝜔, 𝜌). 𝑃 (▶𝜔+, 𝜌) follows from the monotonicity of 𝑃 after observing that
▶𝜔 ⊑ ▶𝜔+ by definition alongside 𝜔 ⊑ 𝜔+.

Case 𝑃 ★𝑄 Similarly to ⋄𝑃 , unfolding ★ tells us that ∃ 𝜌𝑝 , 𝜌𝑞 . 𝜌 = 𝜌𝑝 • 𝜌𝑞 , so it suffices
to prove 𝑃 (𝜔+, 𝜌𝑝) and 𝑄 (𝜔+, 𝜌𝑝), which follow from the monotonicity of 𝑃 and 𝑄 respec-
tively.

Case 𝑃 —★𝑄 Unfolding —★ in the goal, take arbitrary 𝜔++, 𝜌𝑝 ♯ 𝜌 , and 𝜌𝑞 where 𝜔++ ⊒ 𝜔+

and 𝜌 • 𝜌𝑝 = 𝜌𝑞 . Since 𝜔++ ⊒ 𝜔+ ⊒ 𝜔 , by Wld Extension PaRtial ORdeR, we can
instantiate (𝑃 —★𝑄) (𝜔, 𝜌) with 𝜔++, 𝜌𝑝 , and 𝜌𝑞 to complete the proof.

Case wp (e) {�̂�} We proceed similarly to the —★ case, since the definition of wp (−) {−}
involves a similar universal quantification over future worlds. It is worth noting that the
weakest precondition is only defined when ✓ 𝜌 ; the 𝜌 𝑓 ♯ 𝜌 constraint implicitly gives us
this needed validity, by the definition of ♯ paired with Valid Extension Antitonicity.
Instantiating wp (e) {�̂�}(𝜔, 𝜌) with all relevant values will therefore suffice.

□

F.2.1 Selected Separation Logic Rules.

Lemma F.26 (≡-Refl).
(≡-Refl)
⊨ 𝑃 ≡ 𝑃

28 Andrew Wagner, Zachary Eisbach, and Amal Ahmed

PRoof. Immediate after unfolding ≡ and ! with —★-self. □

Lemma F.27 (≡-sym).
(≡-com)
𝑃 ≡ 𝑄 ⊨⊨ 𝑄 ≡ 𝑃

PRoof. Immediate after unfolding ≡ with ★-com. □

Lemma F.28 (≡-tRans).
(≡-tRans)
⊨ 𝑃 ≡ 𝑄 ⊨ 𝑄 ≡ 𝑅

⊨ 𝑃 ≡ 𝑅

PRoof. Immediate after unfolding ≡ using the premises and ! -dRop. □

Lemma F.29 (≡-l).
(≡-l)
𝑃 ★ (𝑃 ≡ 𝑄) ⊨ 𝑄

PRoof. Unfolding ≡ and applying ! -dRop, it suffices if

𝑃 ★ ! (𝑃 —★𝑄) ⊨ 𝑄
which, after applying ! -L, is exactly —★-L. □

F.2.2 Unrestricted Modality Rules.

Lemma F.30 (! -unR).
(! -unR)
! 𝑃 ⊨⊨ ! 𝑃 ★ ! 𝑃

PRoof. Unfolding ⊨, suppose we have 𝜔 and 𝜌 such that ✓ 𝜌 . We must prove ! 𝑃 (𝜔, 𝜌) ⇔
(! 𝑃 ★ ! 𝑃) (𝜔, 𝜌). Unfolding ! and ★, this is

𝜌 = ∅ ∧ 𝑃 (𝜔,∅)
⇔ 𝜌 = 𝜌𝑝 • 𝜌𝑞 ∧

(
𝜌𝑝 = ∅ ∧ 𝑃 (𝜔,∅)

)
∧

(
𝜌𝑞 = ∅ ∧ 𝑃 (𝜔,∅)

)
where 𝜌𝑝 • 𝜌𝑞 = ∅ = 𝜌 . This holds by inspection. □

Lemma F.31 (! -∧-emp).
(! -∧-emp)
! 𝑃 ⊨⊨ emp ∧ 𝑃

PRoof. Immediate after unfolding ! , emp, and ∧. □

Lemma F.32 (! -L).
(! -L)
! 𝑃 ⊨ 𝑃

PRoof. Immediate from ! -∧-emp and ∧-L. □

Lemma F.33 (! -dRop).
(! -dRop)
! 𝑃 ⊨ emp

PRoof. Immediate from ! -∧-emp and ∧-L. □

Realistic Realizability: Specifying ABIs You Can Count On 29

Lemma F.34 (! -idem).
(! -idem)
! 𝑃 ⊨⊨ ! ! 𝑃

PRoof. Using ! -∧-emp, the following sequence of ⊨⊨ completes the proof:
! 𝑃 ⊨⊨ emp ∧ 𝑃 ⊨⊨ emp ∧ emp ∧ 𝑃 ⊨⊨ emp ∧ ! 𝑃 ⊨⊨ ! ! 𝑃

□

Lemma F.35 (! -mono).
(! -mono)
𝑃 ⊨ 𝑄

! 𝑃 ⊨ !𝑄

PRoof. Unfolding ⊨ and ! , suppose we have 𝜔 , 𝜌 such that
• 𝜌 = ∅(H1)

• 𝑃 (𝜔,∅) (H2)

and assume 𝑃 ⊨ 𝑄 (H3) . Unfolding ! in the goal, it suffices to prove 𝜌 = ∅ ∧ 𝑄 (𝜔,∅). This follows
from H1 and H3, instantiated with H2 since ✓ ∅ holds trivially. □

Lemma F.36 (! -emp).
(! -emp)
emp ⊨ ! emp

PRoof. Using ! -∧-emp, it suffices to prove emp ⊨ emp ∧ emp, which holds by unfolding ∧. □

Lemma F.37 (! -⌜−⌝).
(! -⌜−⌝)
⌜𝑃⌝ ⊨ ! ⌜𝑃⌝

PRoof. Unfolding ⊨, suppose we have 𝜔 , 𝜌 such that ✓ 𝜌 (H1) and ⌜𝑃⌝ (𝜔, 𝜌) (H2) . ! ⌜𝑃⌝ (𝜔, 𝜌)
follows immediately from unfolding ! and ⌜−⌝, as H2 tells us that 𝜌 = ∅ and 𝑃 holds. □

Lemma F.38 (! -size (−, −)).
(! -size (−, −))
size (ℓ, 𝑛) ⊨ ! size (ℓ, 𝑛)

PRoof. Unfolding ⊨, suppose we have 𝜔 , 𝜌 such that ✓ 𝜌 (H1) and size (ℓ, 𝑛) (𝜔, 𝜌) (H2) . Then,
! size (ℓ, 𝑛) (𝜔, 𝜌) follows immediately from unfolding ! and size (−, −), since 𝜌 = ∅ necessarily.

□

Lemma F.39 (! -{−} − {−}).
(! -{−} − {−})
{𝑃} e {�̂�} ⊨ ! {𝑃} e {�̂�}

PRoof. Immediate from unfolding {−} − {−} , ! -idem, and refolding {−} − {−} . □

Lemma F.40 (! -≡).
(! -≡)
𝑃 ≡ 𝑄 ⊨ ! (𝑃 ≡ 𝑄)

PRoof. Immediate from unfolding ≡, ! -★, ! -idem, and refolding ≡. □

Lemma F.41 (! -★).
(! -★)
! (𝑃 ★𝑄) ⊨⊨ ! 𝑃 ★ !𝑄

30 Andrew Wagner, Zachary Eisbach, and Amal Ahmed

PRoof. Unfolding ⊨, suppose we have𝜔 , 𝜌 such that✓ 𝜌 (H1) . Unfolding ! and★, we must prove
𝜌 = ∅ ∧ 𝑃 (𝜔,∅) ∧𝑄 (𝜔,∅)

⇔ 𝜌 = 𝜌𝑝 • 𝜌𝑞 ∧
(
𝜌𝑝 = ∅ ∧ 𝑃 (𝜔,∅)

)
∧

(
𝜌𝑞 = ∅ ∧ 𝑃 (𝜔,∅)

)
where 𝜌𝑝 • 𝜌𝑞 = ∅ = 𝜌 . This holds by inspection. □

Lemma F.42 (! -∧).
(! -∧)
! (𝑃 ∧ 𝑄) ⊨⊨ ! 𝑃 ∧ !𝑄

PRoof. Using ! -∧-emp, the following sequence of ⊨⊨ completes the proof
! (𝑃 ∧ 𝑄) ⊨⊨ emp ∧ 𝑃 ∧ 𝑄 ⊨⊨ emp ∧ 𝑃 ∧ emp ∧ 𝑄 ⊨⊨ ! 𝑃 ∧ !𝑄

since emp ⊨⊨ emp ∧ emp by definition. □

Lemma F.43 (! -∧1).
(! -(− ∧ −))
! 𝑃 ∧ 𝑄 ⊨⊨ ! (𝑃 ∧ 𝑄)

PRoof. Follows from ! -∧-emp using the associativity of ∧. □

Lemma F.44 (! -∧ /★).
(! -∧ /★)
! (𝑃 ∧ 𝑄) ⊨⊨ ! (𝑃 ★𝑄)

PRoof. Unfolding ⊨, suppose we have 𝜔 , 𝜌 such that ✓ 𝜌 (H1) . Unfolding ! , ★, and ∧, we must
prove

𝜌 = ∅ ∧ 𝑃 (𝜔,∅) ∧𝑄 (𝜔,∅) ⇔ 𝜌 = ∅ ∧ 𝑃 (𝜔,∅) ∧𝑄 (𝜔,∅)
since ! ensures that 𝜌 = ∅ on both sides, meaning 𝜌𝑝 and 𝜌𝑞 must be exactly ∅ as well. This holds
trivially. □

Lemma F.45 (! -∀).
(! -∀)
�̂� ∈ Prd (𝑋) 𝑋 is inhabited

!∀ �̂� ⊨⊨ ∀ ! �̂�

PRoof. Unfolding ⊨, suppose we have 𝜔 , 𝜌 such that ✓ 𝜌 (H1) . Also, assume 𝑋 is inhabited. We
must prove !∀ �̂� (𝜔, 𝜌) ⇔ ∀ ! �̂� (𝜔, 𝜌). Unfolding ! and ∀ , this is

𝜌 = ∅ ∧
(
∀𝑥 ∈ 𝑋 . �̂� (𝑥)(𝜔,∅)

)
⇔ ∀𝑥 ∈ 𝑋 .

(
𝜌 = ∅ ∧ �̂� (𝑥)(𝜔,∅)

)
Selecting arbitrary elements on each side and instantiating as appropriate completes the proof.
Crucially, since 𝑋 is inhabited, we can take arbitrary 𝑥 ∈ 𝑋 to get 𝜌 = ∅, which is necessary for
the backward direction. □

Lemma F.46 (! -▷).
(! -▷)
!▷ 𝑃 ⊨ ▷ ! 𝑃

PRoof. Unfolding ⊨ and ! , suppose we have 𝜔 , 𝜌 such that
• ✓ 𝜌 (H1)

• 𝜌 = ∅(H2)

• ▷ 𝑃 (𝜔,∅) (H3)

Realistic Realizability: Specifying ABIs You Can Count On 31

Unfolding ▷ in the goal, we must either prove
• 𝜔.step = 0(G1) , or
• 𝜔.step > 0 ∧ ! 𝑃 (▶𝜔, 𝜌) (G2)

If 𝜔.step = 0, then G1 is satisfied trivially. Otherwise, 𝜔.step > 0 and by unfolding ! in G2 it
remains to prove

• 𝜌 = ∅(G3)

• 𝑃 (▶𝜔,∅) (G4)

G3 follows from H2. Since 𝜔.step > 0, unfolding ▷ in H3 must give us exactly 𝑃 (▶𝜔,∅), which
proves G4. □

Lemma F.47 (▷ -!).
(! -▷)
emp ∧ ▷ ! 𝑃 ⊨ !▷ 𝑃

PRoof. Unfolding ⊨, ∧, and emp, suppose we have 𝜔 , 𝜌 such that
• ✓ 𝜌 (H1)

• 𝜌 = ∅(H2)

• ▷ ! 𝑃 (𝜔,∅) (H3)

Unfolding ! and ▷ in the goal, it suffices to prove
• 𝜌 = ∅(G1)

• 𝜔.step = 0 ∨ (𝜔.step > 0 ∧ ▷ 𝑃 (𝜔,∅)) (G2)

H2 solves G1. Unfolding ▷ and ! in H3, we either have
• 𝜔.step = 0, which would solve G2, or
• 𝜔.step > 0(H4) and 𝑃 (▶𝜔,∅) (H5)

In the latter case, to prove G2 it suffices to show ▷ 𝑃 (𝜔,∅), or equivalently 𝑃 (▶𝜔,∅) with H4.
This is solved by H5 exactly, completing the proof. □

F.2.3 Later Modality Rules.

Lemma F.48 (▷ -R).
(▷ -R)
𝑃 ⊨ ▷ 𝑃

PRoof. Unfolding ⊨, suppose we have 𝜔 , 𝜌 such that ✓ 𝜌 (H1) and 𝑃 (𝜔, 𝜌) (H2) . If 𝜔.step = 0, the
claim holds trivially. Otherwise, unfolding ▷ , we must prove that 𝑃 (▶𝜔, 𝜌) holds, which immedi-
ately follows from the definition of Prd, since 𝜔 ⊑ ▶𝜔 . □

Lemma F.49 (▷ -ind).
(▷ -ind)
𝑃 ∧ ▷𝑄 ⊨ 𝑄

𝑃 ⊨ 𝑄

PRoof. Unfolding ⊨, suppose we have
• ✓ 𝜌 (H1)

• 𝑃 (𝜔, 𝜌) (H2)

By the premise and H1, to prove 𝑄 (𝜔, 𝜌) it suffices to prove (𝑃 ∧ ▷𝑄) (𝜔, 𝜌), or equivalently
• 𝑃 (𝜔, 𝜌) (G1)
• ▷𝑄 (𝜔, 𝜌) (G2)

32 Andrew Wagner, Zachary Eisbach, and Amal Ahmed

Clearly G1 holds by H2. Let us first restate the premise for convenience, unfolding ∧ to ob-
tain ∀ 𝜌,𝜔. ✓ 𝜌 ⇒ 𝑃 (𝜔, 𝜌) ∧ ▷𝑄 (𝜔, 𝜌) ⇒ 𝑄 (𝜔, 𝜌) (H3) . This is a meta-level statement that always
holds.

Now, to prove G2, we will use induction. Specifically, let 𝜔𝑘 = ⟨step : 𝑘, sizes : 𝜔.sizes⟩; we will
prove ▷𝑄 (𝜔𝑘 , 𝜌) for all 𝑘 ≤ 𝜔.step. When 𝑘 = 𝜔.step, then𝜔𝑘 = 𝜔 and the proof will be complete.

Case: 𝑘 = 0 The proof of ▷𝑄 (𝜔0, 𝜌) holding follows immediately from the definition of ▷ .
Case: 𝑘 = 𝑛 + 1 The inductive hypothesis is▷𝑄 (𝜔𝑛, 𝜌) (H4) , andwemust prove▷𝑄 (𝜔𝑛+1, 𝜌),
where 𝑛 + 1 ≤ 𝜔.step(H5) . Unfolding ▷ , it suffices to prove 𝑄 (▶𝜔𝑛+1, 𝜌) = 𝑄 (𝜔𝑛, 𝜌). To do
so, we instantiate H3 with 𝜔𝑛 and 𝜌 . With H1, H2 (invoking the monotonicity of Prd, since
𝜔 ⊑ 𝜔𝑘 using H5), and H4, the proof is complete.

□

Lemma F.50 (▷ -mono).
(▷ -mono)
𝑃 ⊨ 𝑄

▷ 𝑃 ⊨ ▷𝑄

PRoof. Unfolding ⊨, suppose we have 𝜔 , 𝜌 such that
• ✓ 𝜌 (H1)

• ▷ 𝑃 (𝜔, 𝜌) (H2)

and assume 𝑃 ⊨ 𝑄 (H3) . If 𝜔.step = 0, the claim holds trivially. Otherwise, unfolding ▷ , we have
𝑃 (▶𝜔, 𝜌) (H4) and must prove𝑄 (▶𝜔, 𝜌) (G1) . This follows by instantiating H3 with H1 and H4. □

Lemma F.51 (▷ -∧).
(▷ -∧)
▷ (𝑃 ∧ 𝑄) ⊨⊨ ▷ 𝑃 ∧ ▷𝑄

PRoof. Unfolding ⊨, suppose we have 𝜔 , 𝜌 such that ✓ 𝜌 . Unfolding ∧, we must prove that

▷ (𝑃 ∧ 𝑄) (𝜔, 𝜌) ⇔ ▷ 𝑃 (𝜔, 𝜌) ∧ ▷𝑄 (𝜔, 𝜌)

Begin by unfolding▷ . If𝜔.step = 0, the claim holds trivially. Otherwise,𝜔.step > 0 andwe rewrite
as

(𝑃 ∧ 𝑄) (▶𝜔, 𝜌) ⇔ 𝑃 (▶𝜔, 𝜌) ∧𝑄 (▶𝜔, 𝜌)
which is immediate with the definition of ∧. □

Lemma F.52 (▷ -★).
(▷ -★)
▷ (𝑃 ★𝑄) ⊨⊨ ▷ 𝑃 ★ ▷𝑄

PRoof. Unfolding ⊨ in the goal, suppose we have 𝜔 , 𝜌 such that ✓ 𝜌 . We must prove that
▷ (𝑃 ★𝑄) (𝜔, 𝜌) ⇔ (▷ 𝑃 ★ ▷𝑄) (𝜔, 𝜌). We prove each direction separately.
For the forward direction, begin by unfolding ▷ . If 𝜔.step = 0, the claim holds trivially. Other-

wise, we may assume (𝑃 ★𝑄) (▶𝜔, 𝜌) (H1) and must prove the existence of 𝜌𝑝 and 𝜌𝑞 such that
• 𝜌𝑝 • 𝜌𝑞 = 𝜌 (G1)

• ▷ 𝑃 (𝜔, 𝜌𝑝) (G2)
• ▷𝑄 (𝜔, 𝜌𝑞) (G3)

Realistic Realizability: Specifying ABIs You Can Count On 33

Unfolding★ in H1, there must exist 𝜌𝑝 and 𝜌𝑞 with 𝜌𝑝 • 𝜌𝑞 = 𝜌 such that 𝑃 (▶𝜔, 𝜌𝑝) and𝑄 (▶𝜔, 𝜌𝑞)
hold, which solves all three goals after unfolding ▷ in G2 and G3.
For the backward direction, we similarly begin by unfolding ★ and ▷ (handling the trivial

𝜔.step = 0 case, as above) to obtain 𝑃 (▶𝜔, 𝜌𝑝) and 𝑄 (▶𝜔, 𝜌𝑞) for some 𝜌𝑝 • 𝜌𝑞 = 𝜌 . Unfold-
ing ▷ and ★ in the goal as above, these are exactly the 𝜌𝑝 and 𝜌𝑞 that must exist. □

Lemma F.53 (▷ -—★).
(▷ -—★)
▷ (𝑃 —★𝑄) ⊨ ▷ 𝑃 —★ ▷𝑄

PRoof. By —★-R, it suffices to prove that
▷ (𝑃 —★𝑄) ★ ▷ 𝑃 ⊨ ▷𝑄

By ▷ -★ and ▷ -mono, it suffices if
(𝑃 —★𝑄) ★ 𝑃 ⊨ 𝑄

which is exactly —★-L. □

F.2.4 Non-Standard Entailments.

Lemma F.54 (@ -mono).
(@ -mono)

𝑃 ⊨ 𝑄

@ℓ 𝑃 ⊨ @ℓ 𝑄

PRoof. Unfolding ⊨ in the goal, suppose we have 𝜔 , 𝜌 such that
• ✓ 𝜌 (H1)

• @ℓ 𝑃 (𝜔, 𝜌) (H2)

Unfolding@ℓ in the goal, we must prove the existence of some 𝜌𝑞 such that
• 𝜌 = ℓ ↦→ shr(1, 𝜌𝑞) (G1)
• 𝑄 (𝜔, 𝜌𝑞) (G2)

Unfolding@ℓ in H2, there exists some 𝜌𝑝 with
• 𝜌 = ℓ ↦→ shr(1, 𝜌𝑝) (H3)
• 𝑃 (𝜔, 𝜌𝑝) (H4)

Choose 𝜌𝑞 to be 𝜌𝑝 . H3 therefore solves G1.
Applying —♦-jump, we have 𝜌 —♦ 𝜌𝑝 , so we can apply Valid Reachability Monotonicity with

H1 to obtain ✓ 𝜌𝑝 . Now, we instantiate the premise 𝑃 ⊨ 𝑄 with ✓ 𝜌𝑝 and H4 to derive 𝑄 (𝜔, 𝜌𝑝),
solving G2. □

Lemma F.55 (@ -!).
(@ -!)
@ℓ 𝑃 ★ !𝑄 ⊨⊨ @ℓ (𝑃 ★ !𝑄)

PRoof. Unfolding ⊨⊨ in the goal, suppose we have 𝜔 , 𝜌 such that ✓ 𝜌 . We must prove that
(@ℓ 𝑃 ★ !𝑄) (𝜔, 𝜌) ⇔ @ℓ (𝑃 ★ !𝑄) (𝜔, 𝜌). Unfolding @ℓ , ★, and ! , we must prove(

∃ 𝜌𝑝 . 𝜌 = ℓ ↦→ shr(1, 𝜌𝑝) ∧ 𝑃 (𝜔, 𝜌𝑝)
)
∧𝑄 (𝜔,∅)

⇔ ∃ 𝜌𝑝 . 𝜌 = ℓ ↦→ shr(1, 𝜌𝑝) ∧
(
𝑃 (𝜔, 𝜌𝑝) ∧𝑄 (𝜔,∅)

)
after noting that separating a resource into one that satisfies an unrestricted predicate means the
separation must be trivial. These are both equivalent to ∃ 𝜌𝑝 . 𝜌 = ℓ ↦→ shr(1, 𝜌𝑝) ∧ 𝑃 (𝜔, 𝜌𝑝) ∧
𝑄 (𝜔+,∅). Note that if there exists no such 𝜌𝑝 , both equivalent statements do not hold. □

34 Andrew Wagner, Zachary Eisbach, and Amal Ahmed

Lemma F.56 (@ -∨).
(@ -∨)
@ℓ (𝑃 ∨ 𝑄) ⊨⊨ @ℓ 𝑃 ∨ @ℓ 𝑄

PRoof. Unfolding ⊨⊨ in the goal, suppose we have 𝜔 , 𝜌 such that ✓ 𝜌 . We must prove that
@ℓ (𝑃 ∨ 𝑄) (𝜔, 𝜌) ⇔ @ℓ 𝑃 ∨ @ℓ 𝑄 (𝜔, 𝜌). Unfolding @ℓ and ∨, we must prove

∃ 𝜌𝑝𝑞 . 𝜌 = ℓ ↦→ shr(1, 𝜌𝑝𝑞) ∧
(
�̂� (𝑥) (𝜔, 𝜌𝑝𝑞) ∨ �̂� (𝑥)(𝜔, 𝜌𝑝𝑞)

)
⇔

(
∃ 𝜌𝑝 . 𝜌 = ℓ ↦→ shr(1, 𝜌𝑝) ∧ �̂� (𝑥) (𝜔, 𝜌𝑝)

)
∨

(
∃ 𝜌𝑞 . 𝜌 = ℓ ↦→ shr(1, 𝜌𝑞) ∧ �̂� (𝑥) (𝜔, 𝜌𝑞)

)
We prove each direction of the implication separately. For the forward direction, suppose we

have 𝜌 = ℓ ↦→ shr(1, 𝜌𝑝𝑞). If �̂� (𝑥)(𝜔, 𝜌𝑝𝑞) holds, then ∃ 𝜌𝑝 . 𝜌 = ℓ ↦→ shr(1, 𝜌𝑝) ∧ �̂� (𝑥) (𝜔, 𝜌𝑝𝑞),
where 𝜌𝑝 = 𝜌𝑝𝑞 . Otherwise, �̂� (𝑥) (𝜔, 𝜌𝑝𝑞) holds, and thus ∃ 𝜌𝑞 . 𝜌 = ℓ ↦→ shr(1, 𝜌𝑞) ∧ �̂� (𝑥) (𝜔, 𝜌𝑝𝑞)
does as well where 𝜌𝑞 = 𝜌𝑝𝑞 .
For the backward direction, we proceed similarly. If the left disjunct holds, and we assert 𝜌𝑝𝑞 =

𝜌𝑝 ; otherwise, the right disjunct must hold and we assert 𝜌𝑝𝑞 = 𝜌𝑝 to complete the proof. □

Lemma F.57 (@ -∃).
(@ -∃)
@ℓ ∃ �̂� ⊨⊨ ∃ @ℓ �̂�

PRoof. Unfolding ⊨⊨ in the goal, suppose we have 𝜔 , 𝜌 such that ✓ 𝜌 . We must prove that
@ℓ ∃ �̂� (𝜔, 𝜌) ⇔ ∃ @ℓ �̂� (𝜔, 𝜌). Unfolding @ℓ and ∃ , we must prove

∃ 𝜌𝑝 . 𝜌 = ℓ ↦→ shr(1, 𝜌𝑝) ∧
(
∃ 𝑥 . �̂� (𝑥)(𝜔, 𝜌𝑝)

)
⇔ ∃ 𝑥 .

(
∃ 𝜌𝑝 . 𝜌 = ℓ ↦→ shr(1, 𝜌𝑝) ∧ �̂� (𝑥) (𝜔, 𝜌𝑝)

)
These are both equivalent to ∃ 𝜌𝑝 , 𝑥 . 𝜌 = ℓ ↦→ shr(1, 𝜌𝑝) ∧ �̂� (𝑥) (𝜔, 𝜌𝑝), noting that reordering of
the existential quantifiers makes no difference, and the resource 𝜌𝑝 is dependent on the structure
of 𝜌 only. If the domain of either existential is uninhabited, the statements are still equivalent,
since would both be false. □

Lemma F.58 (@ -▷).
(@ -▷)
@ℓ ▷ 𝑃 ⊨ ▷@ℓ 𝑃

PRoof. Unfolding ⊨ in the goal, suppose we have 𝜔 , 𝜌 , and ℓ such that
• ✓ 𝜌 (H1)

• @ℓ ▷ 𝑃 (𝜔, 𝜌) (H2)

Unfolding@ℓ and ▷ in the goal, we must prove either
• 𝜔.step = 0(G1) or
• 𝜔.step > 0 ∧ ∃ 𝜌𝑝 . 𝜌 = ℓ ↦→ shr(1, 𝜌𝑝) ∧ 𝑃 (𝜔, 𝜌𝑝) (G2)

Unfolding@ℓ and ▷ in H2, there exists some 𝜌 ′ with
• 𝜌 = ℓ ↦→ shr(1, 𝜌 ′) (H3)
• 𝜔.step = 0 ∨ (𝜔.step > 0 ∧ 𝑃 (𝜔, 𝜌 ′)) (H4)

We proceed by cases on H4. If 𝜔.step = 0, then G1 holds and we are done. Otherwise, we have
(𝜔.step > 0∧𝑃 (𝜔, 𝜌 ′)), which proves G2 after asserting 𝜌 ′ is the resource 𝜌𝑝 which must exist. □

Realistic Realizability: Specifying ABIs You Can Count On 35

Lemma F.59 (@ -⊥).
(@ -⊥)
@ℓ ⊥ ⊨ ⊥

PRoof. Unfolding ⊨ in the goal, suppose we have 𝜔 , 𝜌 such that ✓ 𝜌 (H1) and (@ℓ ⊥) (𝜔, 𝜌) (H2) .
Unfolding @ℓ and ⊥, we must prove

∃ 𝜌𝑝 . 𝜌 = ℓ ↦→ shr(1, 𝜌𝑝) ∧ ⊥ ⇒ ⊥
which follows using standard intuitionistic logic rules. □

Lemma F.60 (⋄ -R).
(⋄ -R)
𝑃 ⊨⋄𝑃

PRoof. Unfolding ⊨ in the goal, suppose we have 𝜔 , 𝜌 such that ✓ 𝜌 (H1) and 𝑃 (𝜔, 𝜌) (H2) . Since
𝜌 —♦ 𝜌 (as 𝜌 ≤ 𝜌), the result immediately follows after unfolding⋄ . □

Lemma F.61 (⋄ -mono).
(⋄ -mono)
𝑃 ⊨ 𝑄

⋄𝑃 ⊨⋄𝑄

PRoof. Unfolding ⊨ in the goal, suppose we have 𝜔 , 𝜌 such that
• ✓ 𝜌 (H1)

• ⋄𝑃 (𝜔, 𝜌) (H2)

Unfolding⋄ , we must prove the existence of some 𝜌𝑞 such that
• 𝜌 —♦ 𝜌𝑞 (G1)
• 𝑄 (𝜔, 𝜌𝑞) (G2)

Unfolding⋄ in H2, there exists some 𝜌𝑝 with
• 𝜌 —♦ 𝜌𝑝 (H3)
• 𝑃 (𝜔, 𝜌𝑝) (H4)

We claim that the 𝜌𝑞 is exactly the 𝜌𝑝 that we are searching for. H3 therefore solves G1.
Applying Valid ReachabilityMonotonicitywith H1 andH3 yields✓ 𝜌𝑝 . Now, we instantiate

the premise 𝑃 ⊨ 𝑄 with ✓ 𝜌𝑝 and H4 to derive 𝑄 (𝜔, 𝜌𝑝), solving G2. □

Lemma F.62 (⋄ -bind).
(⋄ -bind)
𝑃 ⊨⋄𝑄

⋄𝑃 ⊨⋄𝑄

PRoof. Unfolding ⊨ in the goal, suppose we have 𝜔 , 𝜌 such that
• ✓ 𝜌 (H1)

• ⋄𝑃 (𝜔, 𝜌) (H2)

Unfolding⋄ , we must prove the existence of some 𝜌𝑞 such that
• 𝜌 —♦ 𝜌𝑞 (G1)
• 𝑄 (𝜔, 𝜌𝑞) (G2)

Unfolding⋄ in H2, there exists some 𝜌𝑝 with
• 𝜌 —♦ 𝜌𝑝 (H3)

36 Andrew Wagner, Zachary Eisbach, and Amal Ahmed

• 𝑃 (𝜔, 𝜌𝑝) (H4)

Applying Valid Reachability Monotonicity with H1 and H3 gives us ✓ 𝜌𝑝 ; instantiating
𝑃 ⊨⋄𝑄 with this and H4 gives us⋄𝑄 (𝜔, 𝜌𝑝). Unfolding⋄ , there must exist some 𝜌 ′ with

• 𝜌𝑝 —♦ 𝜌 ′ (H5)

• 𝑄 (𝜔, 𝜌 ′) (H6)

𝜌 ′ is the 𝜌𝑞 that we are searching for. H6 instantly solves G2. G1 is solved by applying —♦-tRans
with H3 and H5. □

Lemma F.63 (⋄ -idem).
(⋄ -idem)

⋄⋄𝑃 ⊨⋄𝑃

PRoof. Unfolding ⊨, suppose we have 𝜔 , 𝜌 such that
• ✓ 𝜌 (H1)

• ⋄⋄𝑃 (𝜔, 𝜌) (H2)

Unfolding⋄ , we must prove the existence of some 𝜌𝑝 such that
• 𝜌 —♦ 𝜌𝑝 (G1)
• 𝑃 (𝜔, 𝜌𝑝) (G2)

Unfolding⋄ in H2, there exists some 𝜌1 with
• 𝜌 —♦ 𝜌1 (H3)
• ⋄𝑃 (𝜔, 𝜌1) (H4)

Unfolding⋄ in H4, there exists some 𝜌2 with
• 𝜌1 —♦ 𝜌2 (H5)
• 𝑃 (𝜔, 𝜌2) (H6)

𝜌2 is the 𝜌𝑝 that we are searching for. H6 instantly solves G2. G1 is solved by applying —♦-tRans
with H3 and H5. □

Lemma F.64 (⋄ -@).
(⋄ -@)
@ℓ 𝑃 ⊨⋄𝑃

PRoof. Unfolding ⊨, suppose we have 𝜔 , 𝜌 such that
• ✓ 𝜌 (H1)

• @ℓ 𝑃 (𝜔, 𝜌) (H2)

Unfolding⋄ , we must prove the existence of some 𝜌𝑝 such that
• 𝜌 —♦ 𝜌𝑝 (G1)
• 𝑃 (𝜔, 𝜌𝑝) (G2)

Unfolding@ℓ in H2, there exists some 𝜌 ′ with
• 𝜌 = ℓ ↦→ shr(1, 𝜌 ′) (H3)
• 𝑃 (𝜔, 𝜌 ′) (H4)

𝜌 ′ is the 𝜌𝑝 that we are searching for. H4 instantly solves G2. G1 is solved by applying —♦-jump
with H3. □

Lemma F.65 (⋄ -dRop).
(⋄ -dRop)

⋄ (𝑃 ★𝑄) ⊨⋄𝑃

Realistic Realizability: Specifying ABIs You Can Count On 37

PRoof. Unfolding ⊨, suppose we have 𝜔 , 𝜌 such that
• ✓ 𝜌 (H1)

• ⋄ (𝑃 ★𝑄) (𝜔, 𝜌) (H2)

Unfolding⋄ in the goal, we must prove the existence of some 𝜌𝑝 such that
• 𝜌 —♦ 𝜌𝑝 (G1)
• 𝑃 (𝜔, 𝜌𝑝) (G2)

Unfolding⋄ in H2, there exists some 𝜌 ′ with
• 𝜌 —♦ 𝜌 ′ (H3)
• (𝑃 ★𝑄) (𝜔, 𝜌 ′) (H4)

Unfolding ★ in H4, there exist 𝜌 ′𝑝 and 𝜌 ′𝑞 such that
• 𝜌 ′ = 𝜌 ′𝑝 • 𝜌 ′𝑞

(H5)

• 𝑃 (𝜔, 𝜌 ′𝑝) (H6)

• 𝑄 (𝜔, 𝜌 ′𝑞) (H7)

𝜌 ′𝑝 is the 𝜌𝑝 that we are searching for. H6 instantly solves G2.
Now, note that 𝜌 ′𝑝 ≤ 𝜌 ′ from H5, meaning 𝜌 ′ —♦ 𝜌 ′𝑝 by —♦-sub. Applying —♦-tRans with this and

H3 solves G1. □

Lemma F.66 (⋄ -!).
(⋄ -!)
𝑃 ⊨⋄ !𝑄

𝑃 ⊨ 𝑃 ★ !𝑄

PRoof. Unfolding ⊨, suppose we have 𝜔 , 𝜌 such that
• ✓ 𝜌 (H1)

• 𝑃 (𝜔, 𝜌) (H2)

Unfolding ★ and ! and simplifying, we must prove 𝑃 (𝜔, 𝜌) ∧𝑄 (𝜔,∅), noting the separation of
𝜌 must be trivial to satisfy the emptiness condition of ! . With H2, it remains to show 𝑄 (𝜔,∅) (G1) .
Now, instantiate 𝑃 ⊨⋄ !𝑄 with H1 and H2 to obtain⋄ !𝑄 . Unfolding⋄ and ! , this tells us that

𝜌 —♦ ∅ ∧𝑄 (𝜔,∅), solving G1. □

F.2.5 Weakest Preconditions.

Lemma F.67 (wp-Ramify).
(wp-Ramify)(
∀ w. �̂� (w) —★ �̂� (w)

)
★ wp (e) {�̂�} ⊨ wp (e) {�̂�}

PRoof. Unfolding ⊨ and ★, suppose we have 𝜔, 𝜌, 𝜌1, 𝜌2 such that
• ✓ 𝜌 (H1)

• 𝜌 = 𝜌1 • 𝜌2
(H2)

•
(
∀ w. �̂� (w) —★ �̂� (w)

)
(𝜔, 𝜌1)

(H3)

• wp (e) {�̂�}(𝜔, 𝜌2)
(H4)

Unfolding wp (−) {−}, suppose
• 𝜔+ ⊒ 𝜔 (H5)

• 𝜌 𝑓 ♯ 𝜌 (H6)

38 Andrew Wagner, Zachary Eisbach, and Amal Ahmed

• 𝜓 = 𝜔+ .sizes(H7)
• 𝜇 = erase(𝜌 • 𝜌 𝑓) (H8)

• 𝑘 < 𝜔+ .step(H9)

• 𝜔 ′ = ⟨step : 𝜔+.step − 𝑘, sizes : 𝜓 ′⟩ (H10)

• (𝜓, 𝜇, e) →𝑘 (𝜓 ′, 𝜇′, e′) ↛(H11)

We must show, for some 𝜌 ′ (G1) ,
• 𝜌 𝑓 ♯ 𝜌 ′ (G2)

• 𝜓 ′ ⊇ 𝜓 (G3)

• 𝜇′ = erase(𝜌 ′ • 𝜌 𝑓) (G4)
• e′ ∈ Word(G5)

• �̂� (e′) (𝜔 ′, 𝜌 ′) (G6)

Now, note that 𝜇 = erase(𝜌 • 𝜌 𝑓) = erase((𝜌1 • 𝜌2) • 𝜌 𝑓) = erase(𝜌2 • (𝜌1 • 𝜌 𝑓)) by H2, Res
Composition Associative, and Res Composition Commutative. Also note that 𝜌2 ♯ (𝜌1 • 𝜌 𝑓),
since their composition is defined and valid by unfolding ♯ in H6.
This means that we can instantiate wp (e) {�̂�}(𝜔, 𝜌2) with 𝜌2 ♯ (𝜌1 • 𝜌 𝑓), 𝜇 = erase(𝜌2 •

(𝜌1 • 𝜌 𝑓)), and (𝜓, 𝜇, e) →𝑘 (𝜓 ′, 𝜇′, e′) ↛, using additional hypotheses and worlds from above as
appropriate. This guarantees the existence of some 𝜌 ′2 such that

• (𝜌1 • 𝜌 𝑓) ♯ 𝜌 ′2
(H12)

• 𝜓 ′ ⊇ 𝜓 (H13)

• 𝜇′ = erase(𝜌 ′2 • (𝜌1 • 𝜌 𝑓)) (H14)
• e′ ∈ Word(H15)

• �̂� (e′) (𝜔 ′, 𝜌 ′2)
(H16)

H13 and H15 immediately solve G3 and G5 respectively.
We assert that 𝜌 ′ = 𝜌1 • 𝜌 ′2. H14 solves G4 using Res Composition Commutative. To prove

G2, the composition 𝜌 𝑓 • (𝜌1 • 𝜌 ′2) must be defined and valid. This follows from H12 by unfolding
• and applying Res Composition Commutative as appropriate.
It remains to prove G6, and we have not yet used H16 nor H3. Unfolding ∀ and —★, then instan-

tiating
(
∀ w. �̂� (w) —★ �̂� (w)

)
(𝜔, 𝜌1) with 𝜔 ′ ⊒ 𝜔+ ⊒ 𝜔 and e′ gives us

• ∀ 𝜌𝑝 ♯ 𝜌, 𝜌𝑞 . 𝜌1 • 𝜌𝑝 = 𝜌𝑞 ⇒ �̂� (e′) (𝜔 ′, 𝜌𝑝) ⇒ �̂� (e′) (𝜔 ′, 𝜌𝑞)
(H17)

Now, let 𝜌𝑝 = 𝜌 ′2 and 𝜌𝑞 = 𝜌 ′ = 𝜌1 • 𝜌 ′2. Instantiating H17 using these resources and H16 solves
G6, completing the proof. □

Lemma F.68 (wp-fRame).
(wp-fRame)
𝑃 ★ wp (e) {�̂�} ⊨ wp (e) {w. 𝑃 ★ �̂� (w)}

PRoof. By wp-Ramify, it suffices if

𝑃 ★ wp (e) {�̂�} ⊨
(
∀ w. �̂� (w) —★

(
𝑃 ★ �̂� (w)

))
★ wp (e) {�̂�}

By ★-mono and ∀ -R, it suffices if

𝑃 ⊨ �̂� (w) —★
(
𝑃 ★ �̂� (w)

)
for arbitrary w. This follows from —★-R and Refl. □

Realistic Realizability: Specifying ABIs You Can Count On 39

Lemma F.69 (wp-mono).
(wp-mono)

∀w. �̂� (w) ⊨ �̂� (w)
wp (e) {�̂�} ⊨ wp (e) {�̂�}

PRoof. By wp-Ramify, it suffices if

wp (e) {�̂�} ⊨
(
∀ w. �̂� (w) —★ �̂� (w)

)
★ wp (e) {�̂�}

By ★-mono and ∀ -R, it suffices if
⊨ �̂� (w) —★ �̂� (w)

for arbitrary w, which follows from —★-R and the premise. □

Lemma F.70 (wp-val).
(wp-val)
�̂� (w) ⊨ wp (w) {�̂�}

PRoof. Unfolding ⊨, suppose we have 𝜔, 𝜌 such that
• ✓ 𝜌 (H1)

• �̂� (w) (𝜔, 𝜌) (H2)

Unfolding wp (−) {−}, suppose
• 𝜔+ ⊒ 𝜔 (H3)

• 𝜌 𝑓 ♯ 𝜌 (H4)

• 𝜓 = 𝜔+ .sizes(H5)

• 𝑘 < 𝜔+ .step(H6)

• 𝜔 ′ = ⟨step : 𝜔+.step − 𝑘, sizes : 𝜓 ′⟩ (H7)

• (𝜓, erase(𝜌 • 𝜌 𝑓), w) →𝑘 (𝜓 ′, 𝜇′, e′) ↛(H8)

We must show, for some 𝜌 ′ (G1) ,
• 𝜌 𝑓 ♯ 𝜌 ′ (G2)

• 𝜓 ′ ⊇ 𝜓 (G3)

• 𝜇′ = erase(𝜌 ′ • 𝜌 𝑓) (G4)
• e′ ∈ Word(G5)

• �̂� (e′) (𝜔 ′, 𝜌 ′) (G6)

Let 𝜌 ′ = 𝜌 . H4 subsequently solves G2. By the operational semantics, (𝜓, erase(𝜌 • 𝜌 𝑓), w)
cannot take any steps, meaning we must have

• 𝜓 ′ = 𝜓 , solving G3
• 𝜇′ = erase(𝜌 • 𝜌 𝑓), solving G4
• e′ = w, solving G5
• 𝑘 = 0

Since 𝑘 = 0, we have 𝜔 ′ = 𝜔+. Applying the monotonicity of Prd to H2 with H3 solves G6. □

Lemma F.71 (wp-bind).
(wp-bind)
wp (e) {w. wp (K[w]) {�̂�}} ⊨ wp (K[e]) {�̂�}

PRoof. Unfolding ⊨, suppose we have 𝜔, 𝜌 such that
• ✓ 𝜌 (H1)

40 Andrew Wagner, Zachary Eisbach, and Amal Ahmed

• wp (e) {w. wp (K[w]) {�̂�}}(𝜔, 𝜌) (H2)

Unfolding wp (−) {−}, suppose
• 𝜔+ ⊒ 𝜔 (H3)

• 𝜌 𝑓 ♯ 𝜌 (H4)

• 𝜓 = 𝜔+ .sizes(H5)
• 𝜇 = erase(𝜌 • 𝜌 𝑓) (H6)

• 𝑘 < 𝜔+ .step(H7)

• 𝜔2 = ⟨step : 𝜔+ .step − 𝑘, sizes : 𝜓2⟩ (H8)

• (𝜓, 𝜇, K[e]) →𝑘 (𝜓2, 𝜇2, e′) ↛(H9)

We must show, for some 𝜌 ′ (G1) ,
• 𝜌 𝑓 ♯ 𝜌 ′ (G2)

• 𝜓2 ⊇ 𝜓 (G3)

• 𝜇2 = erase(𝜌 ′ • 𝜌 𝑓) (G4)
• e′ ∈ Word(G5)

• �̂� (e′) (𝜔2, 𝜌
′) (G6)

It follows from H9 by inspection of the operational semantics that there exist 𝜓1, 𝜇1, e0, and
0 ≤ 𝑗 ≤ 𝑘 such that

• (𝜓, 𝜇, e) →𝑗 (𝜓1, 𝜇1, e0) ↛(H10)

• (𝜓, 𝜇, K[e]) →𝑗 (𝜓1, 𝜇1, K[e0]) →𝑘− 𝑗 (𝜓2, 𝜇2, e′) ↛(H11)

Now, instantiate wp (e) {w. wp (K[w]) {�̂�}}(𝜔, 𝜌) with H3, H4, H5, H6, 𝑗 ≤ 𝑘 < 𝜔+ .step and
𝜔1 = ⟨step : 𝜔+.step − 𝑗, sizes : 𝜓1⟩. By providing H10, we conclude that for some 𝜌 ′1,

• 𝜌 𝑓 ♯ 𝜌 ′1
(H12)

• 𝜓1 ⊇ 𝜓 (H13)

• 𝜇1 = erase(𝜌 ′1 • 𝜌 𝑓) (H14)
• e0 ∈ Word(H15)

• wp (K[e0]) {�̂�}(𝜔1, 𝜌
′
1)

(H16)

Now, instantiate wp (K[e0]) {�̂�}(𝜔1, 𝜌
′
1) with 𝜔1 ⊒ 𝜔1, 𝜌 𝑓 ♯ 𝜌 ′1, 𝜓1 = 𝜔1 .sizes, 𝑘 − 𝑗 < 𝜔1.step,

and 𝜔2 = ⟨step : 𝜔1 .step − (𝑘 − 𝑗), sizes : 𝜓2⟩. Note that this 𝜔2 is exactly the 𝜔2 from H8, since
𝜔1.step−(𝑘− 𝑗) = (𝜔+.step− 𝑗)−(𝑘− 𝑗) = 𝜔+.step−𝑘 . For this same reason, we know𝑘− 𝑗 < 𝜔1 .step.
By providing (𝜓1, 𝜇1, K[e0]) →𝑘− 𝑗 (𝜓2, 𝜇2, e′) ↛ from H11, we conclude that for some 𝜌 ′2,

• 𝜌 𝑓 ♯ 𝜌 ′2
(H17)

• 𝜓2 ⊇ 𝜓1
(H18)

• 𝜇2 = erase(𝜌 ′2 • 𝜌 𝑓) (H19)
• e′ ∈ Word(H20)

• �̂� (e′) (𝜔2, 𝜌
′
2)

(H21)

We set 𝜌 ′ = 𝜌 ′2. H17, H19, H20, and H21 instantly solve G2, G4, G5, G6, respectively. H18 and
H13 together prove G3. □

Lemma F.72 (wp-let).
(wp-let)
▷ wp (e[w/x]) {�̂�} ⊨ wp (const x = w; e) {�̂�}

PRoof. Unfolding ⊨, suppose we have 𝜔, 𝜌 such that

Realistic Realizability: Specifying ABIs You Can Count On 41

• ✓ 𝜌 (H1)

• ▷ wp (e[w/x]) {�̂�}(𝜔, 𝜌) (H2)

Unfolding ▷ , this tells us that either
• 𝜔.step = 0(H3) , or
• 𝜔.step > 0 ∧ wp (e[w/x]) {�̂�}(▶𝜔, 𝜌) (H4)

Unfolding wp (−) {−}, suppose
• 𝜔+ ⊒ 𝜔 (H5)

• 𝜌 𝑓 ♯ 𝜌 (H6)

• 𝜓 = 𝜔+ .sizes(H7)
• 𝜇 = erase(𝜌 • 𝜌 𝑓) (H8)

• 𝑘 < 𝜔+ .step(H9)

• 𝜔 ′ = ⟨step : 𝜔+.step − 𝑘, sizes : 𝜓 ′⟩ (H10)

• (𝜓, 𝜇, const x = w; e) →𝑘 (𝜓 ′, 𝜇′, e′) ↛(H11)

If we have H3, then for any 𝜔+ ⊒ 𝜔 , there exist no non-negative 𝑘 < 𝜔+.step, meaning that
wp (const x = w; e) {�̂�}(𝜔, 𝜌) holds vacuously. Otherwise, we may use H4 and must prove the
existence of some 𝜌 ′ such that

• 𝜌 𝑓 ♯ 𝜌 ′ (G1)

• 𝜓 ′ ⊇ 𝜓 (G2)

• 𝜇′ = erase(𝜌 ′ • 𝜌 𝑓) (G3)
• e′ ∈ Word(G4)

• �̂� (e′) (𝜔 ′, 𝜌 ′) (G5)

By inspecting the operational semantics, we observe that the evaluation in H11 must proceed
as (𝜓, 𝜇, const x = w; e) → (𝜓, 𝜇, e[w/x]) →𝑘−1 (𝜓 ′, 𝜇′, e′) ↛(H12) , noting that this first stepmust
always be taken before reaching an irreducible configuration.

Now, instantiate wp (e[w/x]) {�̂�}(▶𝜔, 𝜌) from H4 with
• ▶𝜔+ ⊒ ▶𝜔
• 𝜌 𝑓 ♯ 𝜌 , from H6
• 𝜓 = ▶𝜔+ .sizes = 𝜔+.sizes
• 𝜇 = erase(𝜌 • 𝜌 𝑓), from H8
• 𝑘 − 1 < ▶𝜔+.step
• 𝜔 ′ = ⟨step : ▶𝜔+.step − (𝑘 − 1), sizes : 𝜓 ′⟩ = ⟨step : 𝜔+.step − 𝑘, sizes : 𝜓 ′⟩

Note that ▶𝜔+ is defined, since 𝑘 < 𝜔+.step must be at least one in order to take the step
in H12. Also, ▶𝜔+ ⊒ ▶𝜔 and 𝑘 − 1 < ▶𝜔+.step by unfolding ▶ in H5 and H9 respectively, so
the instantiation is valid. Providing (𝜓, 𝜇, e[w/x]) →𝑘−1 (𝜓 ′, 𝜇′, e′) ↛ from H12 guarantees the
existence of some 𝜌 ′ that meets the conditions from above, solving all remaining goals. □

Lemma F.73 (wp-seq).
(wp-seq)
wp (e1) {_. ▷ wp (e2) {�̂�}} ⊨ wp (e1; e2) {�̂�}

PRoof. After desugaring e1; e2, it suffices to prove
wp (e1) {_. ▷ wp (e2) {�̂�}} ⊨ wp (const x = e1; e2) {�̂�}

where x does not appear free in e2. By wp-bind, it suffices if
wp (e1) {_. ▷ wp (e2) {�̂�}} ⊨ wp (e1) {w. wp (const x = w; e2) {�̂�}}

42 Andrew Wagner, Zachary Eisbach, and Amal Ahmed

Now, since ▷ wp (e2 [w/x]) {�̂�} ⊨ wp (const x = w; e2) {�̂�} for arbitrary w by wp-let, applying
wp-mono leaves us with

▷ wp (e2 [w/x]) {�̂�} ⊨ ▷ wp (e2) {�̂�}
as a proof obligation. This follows from Refl, as x does not appear free in e2 □

Lemma F.74 (wp-bop).
(wp-bop)

w = J⊕K(w1, w2)
▷ �̂� (w) ⊨ wp (w1 ⊕ w2) {�̂�}

PRoof. Unfolding ⊨, suppose we have 𝜔, 𝜌 such that
• ✓ 𝜌 (H1)

• ▷ �̂� (w)(𝜔, 𝜌) (H2)

Unfolding ▷ , this tells us that either
• 𝜔.step = 0(H3) , or
• 𝜔.step > 0 ∧ �̂� (w) (▶𝜔, 𝜌) (H4)

Unfolding wp (−) {−}, suppose
• 𝜔+ ⊒ 𝜔 (H5)

• 𝜌 𝑓 ♯ 𝜌 (H6)

• 𝜓 = 𝜔+ .sizes(H7)
• 𝜇 = erase(𝜌 • 𝜌 𝑓) (H8)

• 𝑘 < 𝜔+ .step(H9)

• 𝜔 ′ = ⟨step : 𝜔+.step − 𝑘, sizes : 𝜓 ′⟩ (H10)

• (𝜓, 𝜇, w1 ⊕ w2) →𝑘 (𝜓 ′, 𝜇′, e′) ↛(H11)

If we have H3, then for any 𝜔+ ⊒ 𝜔 , there exist no non-negative 𝑘 < 𝜔+.step, meaning that
wp (w1 ⊕ w2) {�̂�}(𝜔, 𝜌) holds vacuously. Otherwise, we may use H4 and must prove the existence
of some 𝜌 ′ such that

• 𝜌 𝑓 ♯ 𝜌 ′ (G1)

• 𝜓 ′ ⊇ 𝜓 (G2)

• 𝜇′ = erase(𝜌 ′ • 𝜌 𝑓) (G3)
• e′ ∈ Word(G4)

• �̂� (e′) (𝜔 ′, 𝜌 ′) (G5)

By inspecting the operational semantics, using the premise, we observe that the evaluation in
H11 must proceed as (𝜓, 𝜇, w1 ⊕ w2) → (𝜓, 𝜇, w) ↛(H12) , where

• 𝜓 ′ = 𝜓 , solving G2
• e′ = w ∈ Word, solving G4
• 𝜇 = 𝜇′

• 𝑘 = 1, so 𝜔 ′ = ▶𝜔+

We set 𝜌 ′ = 𝜌 ; G1 andG3 follow fromH6 andH8. It remains to show �̂� (e′)(𝜔 ′, 𝜌 ′) = �̂� (w) (▶𝜔+, 𝜌),
which follows from H4 with with definition of Prd. □

Lemma F.75 (wp-funptR).
(wp-funptR)

F ∋ f (x) {e}
▷ �̂� (⟨f⟩F) ⊨ wpF (f) {�̂�}

Realistic Realizability: Specifying ABIs You Can Count On 43

PRoof. Unfolding ⊨, suppose we have 𝜔, 𝜌 such that
• ✓ 𝜌 (H1)

• ▷ �̂� (⟨f⟩F) (𝜔, 𝜌)
(H2)

Unfolding ▷ , this tells us that either
• 𝜔.step = 0(H3) , or
• 𝜔.step > 0 ∧ �̂� (⟨f⟩F)(▶𝜔, 𝜌)

(H4)

Unfolding wp (−) {−}, suppose
• 𝜔+ ⊒ 𝜔 (H5)

• 𝜌 𝑓 ♯ 𝜌 (H6)

• 𝜓 = 𝜔+ .sizes(H7)
• 𝜇 = erase(𝜌 • 𝜌 𝑓) (H8)

• 𝑘 < 𝜔+ .step(H9)

• 𝜔 ′ = ⟨step : 𝜔+.step − 𝑘, sizes : 𝜓 ′⟩ (H10)

• (𝜓, 𝜇, f) →𝑘 (𝜓 ′, 𝜇′, e′) ↛(H11)

If we have H3, then for any 𝜔+ ⊒ 𝜔 , there exist no non-negative 𝑘 < 𝜔+.step, meaning that
wpF (f) {�̂�}(𝜔, 𝜌) holds vacuously. Otherwise, we may use H4 and must prove the existence of
some 𝜌 ′ such that

• 𝜌 𝑓 ♯ 𝜌 ′ (G1)

• 𝜓 ′ ⊇ 𝜓 (G2)

• 𝜇′ = erase(𝜌 ′ • 𝜌 𝑓) (G3)
• e′ ∈ Word(G4)

• �̂� (e′) (𝜔 ′, 𝜌 ′) (G5)

By inspecting the operational semantics, using the premise, we observe that the evaluation in
H11 must proceed as (𝜓, 𝜇, f) → (𝜓, 𝜇, ⟨f⟩F) ↛(H12) , where

• 𝜓 ′ = 𝜓 , solving G2
• e′ = ⟨f⟩F ∈ Word, solving G4
• 𝜇 = 𝜇′

• 𝑘 = 1, so 𝜔 ′ = ▶𝜔+

We assert 𝜌 ′ = 𝜌 ; G1 and G3 follow from H6 and H8. It remains to show �̂� (e′)(𝜔 ′, 𝜌 ′) =
�̂� (⟨f⟩F)(▶𝜔+, 𝜌), which follows from H4 with the definition of Prd.

□

Lemma F.76 (wp-app).
(wp-app)

F ∋ f (x) {e}

▷ wpF

(
e[w/x]

)
{�̂�} ⊨ wpF (⟨f⟩F (w)) {�̂�}

PRoof. Unfolding ⊨, suppose we have 𝜔, 𝜌 such that
• ✓ 𝜌 (H1)

• ▷ wpF

(
e[w/x]

)
{�̂�}(𝜔, 𝜌)

(H2)

Unfolding ▷ , this tells us that either
• 𝜔.step = 0(H3) , or

44 Andrew Wagner, Zachary Eisbach, and Amal Ahmed

• 𝜔.step > 0 ∧ wpF

(
e[w/x]

)
{�̂�}(▶𝜔, 𝜌)

(H4)

Unfolding wp (−) {−}, suppose
• 𝜔+ ⊒ 𝜔 (H5)

• 𝜌 𝑓 ♯ 𝜌 (H6)

• 𝜓 = 𝜔+ .sizes(H7)
• 𝜇 = erase(𝜌 • 𝜌 𝑓) (H8)

• 𝑘 < 𝜔+ .step(H9)

• 𝜔 ′ = ⟨step : 𝜔+.step − 𝑘, sizes : 𝜓 ′⟩ (H10)

• F ⊢ (𝜓, 𝜇, ⟨f⟩F (w)) →𝑘 (𝜓 ′, 𝜇′, e′) ↛(H11)

If we have H3, then for any 𝜔+ ⊒ 𝜔 , there exist no non-negative 𝑘 < 𝜔+.step, meaning that
wpF (⟨f⟩F (w)) {�̂�}(𝜔, 𝜌) holds vacuously. Otherwise, wemay useH4 andmust prove the existence
of some 𝜌 ′ such that

• 𝜌 𝑓 ♯ 𝜌 ′ (G1)

• 𝜓 ′ ⊇ 𝜓 (G2)

• 𝜇′ = erase(𝜌 ′ • 𝜌 𝑓) (G3)
• e′ ∈ Word(G4)

• �̂� (e′) (𝜔 ′, 𝜌 ′) (G5)

By inspecting the operational semantics, using F ∋ f (x) {e} we observe that the evaluation
in H11 must proceed as F ⊢ (𝜓, 𝜇, ⟨f⟩F (w)) → (𝜓, 𝜇, e[w/x]) →𝑘−1 (𝜓 ′, 𝜇′, e′) ↛(H12)

. This first
substitution step must always be taken before reaching an irreducible configuration.

Now, instantiate wpF

(
e[w/x]

)
{�̂�}(▶𝜔, 𝜌) from H4 with

• ▶𝜔+ ⊒ ▶𝜔
• 𝜌 𝑓 ♯ 𝜌 , from H6
• 𝜓 = ▶𝜔+ .sizes = 𝜔+.sizes
• 𝜇 = erase(𝜌 • 𝜌 𝑓), from H8
• 𝑘 − 1 < ▶𝜔+.step
• 𝜔 ′ = ⟨step : ▶𝜔+.step − (𝑘 − 1), sizes : 𝜓 ′⟩ = ⟨step : 𝜔+.step − 𝑘, sizes : 𝜓 ′⟩

Note that ▶𝜔+ is defined, since 𝑘 < 𝜔+.step must be at least one in order to take the step in
H12. Also, ▶𝜔+ ⊒ ▶𝜔 and 𝑘 − 1 < ▶𝜔+ .step by unfolding ▶ in H5 and H9 respectively, so the
instantiation is valid. Providing F ⊢ (𝜓, 𝜇, e[w/x]) →𝑘−1 (𝜓 ′, 𝜇′, e′) ↛ from H12 guarantees the
existence of some 𝜌 ′ that meets the conditions from above, solving all remaining goals. □

Lemma F.77 (wp-if-t).
(wp-if-t)

w ∉ {null, 0,h}
▷ wp (e1) {�̂�} ⊨ wp (if (w) {e1} else {e2}) {�̂�}

PRoof. Unfolding ⊨, suppose we have 𝜔, 𝜌 such that
• ✓ 𝜌 (H1)

• ▷ wp (e1) {�̂�}(𝜔, 𝜌) (H2)

Unfolding ▷ , this tells us that either
• 𝜔.step = 0(H3) , or
• 𝜔.step > 0 ∧ wp (e1) {�̂�}(▶𝜔, 𝜌) (H4)

Realistic Realizability: Specifying ABIs You Can Count On 45

Unfolding wp (−) {−}, suppose
• 𝜔+ ⊒ 𝜔 (H5)

• 𝜌 𝑓 ♯ 𝜌 (H6)

• 𝜓 = 𝜔+ .sizes(H7)
• 𝜇 = erase(𝜌 • 𝜌 𝑓) (H8)

• 𝑘 < 𝜔+ .step(H9)

• 𝜔 ′ = ⟨step : 𝜔+.step − 𝑘, sizes : 𝜓 ′⟩ (H10)

• (𝜓, 𝜇, if (w) {e1} else {e2}) →𝑘 (𝜓 ′, 𝜇′, e′) ↛(H11)

If we have H3, then for any 𝜔+ ⊒ 𝜔 , there exist no non-negative 𝑘 < 𝜔+.step, meaning that
wp (if (w) {e1} else {e2}) {�̂�}(𝜔, 𝜌) holds vacuously. Otherwise, wemay use H4 andmust prove
the existence of some 𝜌 ′ such that

• 𝜌 𝑓 ♯ 𝜌 ′ (G1)

• 𝜓 ′ ⊇ 𝜓 (G2)

• 𝜇′ = erase(𝜌 ′ • 𝜌 𝑓) (G3)
• e′ ∈ Word(G4)

• �̂� (e′) (𝜔 ′, 𝜌 ′) (G5)

By inspecting the operational semantics, using w ∉ {null, 0,h} we observe that the evaluation
in H11 must proceed as (𝜓, 𝜇, if (w) {e1} else {e2}) → (𝜓, 𝜇, e1) →𝑘−1 (𝜓 ′, 𝜇′, e′) ↛(H12) . This
first step must always be taken before reaching an irreducible configuration.

Now, instantiate wp (e1) {�̂�}(▶𝜔, 𝜌) from H4 with
• ▶𝜔+ ⊒ ▶𝜔
• 𝜌 𝑓 ♯ 𝜌 , from H6
• 𝜓 = ▶𝜔+ .sizes = 𝜔+.sizes
• 𝜇 = erase(𝜌 • 𝜌 𝑓), from H8
• 𝑘 − 1 < ▶𝜔+.step
• 𝜔 ′ = ⟨step : ▶𝜔+.step − (𝑘 − 1), sizes : 𝜓 ′⟩ = ⟨step : 𝜔+.step − 𝑘, sizes : 𝜓 ′⟩

Note that ▶𝜔+ is defined, since 𝑘 < 𝜔+.step must be at least one in order to take the step in
H12. Also, ▶𝜔+ ⊒ ▶𝜔 and 𝑘 − 1 < ▶𝜔+ .step by unfolding ▶ in H5 and H9 respectively, so the
instantiation is valid. Providing (𝜓, 𝜇, e1) →𝑘−1 (𝜓 ′, 𝜇′, e′) ↛ from H12 guarantees the existence
of some 𝜌 ′ that meets the conditions from above, solving all remaining goals. □

Lemma F.78 (wp-if-f).
(wp-if-f)

w ∈ {null, 0}
▷ wp (e2) {�̂�} ⊨ wp (if (w) {e1} else {e2}) {�̂�}

PRoof. Unfolding ⊨, suppose we have 𝜔, 𝜌 such that
• ✓ 𝜌 (H1)

• ▷ wp (e2) {�̂�}(𝜔, 𝜌) (H2)

Unfolding ▷ , this tells us that either
• 𝜔.step = 0(H3) , or
• 𝜔.step > 0 ∧ wp (e2) {�̂�}(▶𝜔, 𝜌) (H4)

Unfolding wp (−) {−}, suppose
• 𝜔+ ⊒ 𝜔 (H5)

46 Andrew Wagner, Zachary Eisbach, and Amal Ahmed

• 𝜌 𝑓 ♯ 𝜌 (H6)

• 𝜓 = 𝜔+ .sizes(H7)
• 𝜇 = erase(𝜌 • 𝜌 𝑓) (H8)

• 𝑘 < 𝜔+ .step(H9)

• 𝜔 ′ = ⟨step : 𝜔+.step − 𝑘, sizes : 𝜓 ′⟩ (H10)

• (𝜓, 𝜇, if (w) {e1} else {e2}) →𝑘 (𝜓 ′, 𝜇′, e′) ↛(H11)

If we have H3, then for any 𝜔+ ⊒ 𝜔 , there exist no non-negative 𝑘 < 𝜔+.step, meaning that
wp (if (w) {e1} else {e2}) {�̂�}(𝜔, 𝜌) holds vacuously. Otherwise, wemay use H4 andmust prove
the existence of some 𝜌 ′ such that

• 𝜌 𝑓 ♯ 𝜌 ′ (G1)

• 𝜓 ′ ⊇ 𝜓 (G2)

• 𝜇′ = erase(𝜌 ′ • 𝜌 𝑓) (G3)
• e′ ∈ Word(G4)

• �̂� (e′) (𝜔 ′, 𝜌 ′) (G5)

By inspecting the operational semantics, using w ∈ {null, 0} we observe that the evaluation in
H11 must proceed as (𝜓, 𝜇, if (w) {e1} else {e2}) → (𝜓, 𝜇, e2) →𝑘−1 (𝜓 ′, 𝜇′, e′) ↛(H12) . This first
step must always be taken before reaching an irreducible configuration.

Now, instantiate wp (e2) {�̂�}(▶𝜔, 𝜌) from H4 with
• ▶𝜔+ ⊒ ▶𝜔
• 𝜌 𝑓 ♯ 𝜌 , from H6
• 𝜓 = ▶𝜔+ .sizes = 𝜔+.sizes
• 𝜇 = erase(𝜌 • 𝜌 𝑓), from H8
• 𝑘 − 1 < ▶𝜔+.step
• 𝜔 ′ = ⟨step : ▶𝜔+.step − (𝑘 − 1), sizes : 𝜓 ′⟩ = ⟨step : 𝜔+.step − 𝑘, sizes : 𝜓 ′⟩

Note that ▶𝜔+ is defined, since 𝑘 < 𝜔+.step must be at least one in order to take the step in
H12. Also, ▶𝜔+ ⊒ ▶𝜔 and 𝑘 − 1 < ▶𝜔+ .step by unfolding ▶ in H5 and H9 respectively, so the
instantiation is valid. Providing (𝜓, 𝜇, e2) →𝑘−1 (𝜓 ′, 𝜇′, e′) ↛ from H12 guarantees the existence
of some 𝜌 ′ that meets the conditions from above, solving all remaining goals. □

Lemma F.79 (wp-malloc).
(wp-malloc)

𝑛 > 0

▷
(
∀ ℓ ∈ LocN+ .

(
★𝑖<𝑛

(ℓ + 𝑖) ↦→ h
)
—★ size (ℓ, 𝑛) —★ �̂� (ℓ)

)
⊨ wp (malloc (n)) {�̂�}

PRoof. Unfolding ⊨ and ★, suppose we have 𝜔 and 𝜌 such that
• ✓ 𝜌 (H1)

• ▷
(
∀ ℓ ∈ LocN+ . (★𝑖<𝑛 (ℓ + 𝑖) ↦→ h) —★ size (ℓ, 𝑛) —★ �̂� (ℓ)

)
(𝜔, 𝜌)

(H2)

Unfolding ▷ , this tells us that either
• 𝜔.step = 0(H3) , or
• 𝜔.step > 0 ∧

(
∀ ℓ ∈ LocN+ . (★𝑖<𝑛 (ℓ + 𝑖) ↦→ h) —★ size (ℓ, 𝑛) —★ �̂� (ℓ)

)
(▶𝜔, 𝜌)

(H4)

Unfolding wp (−) {−}, suppose
• 𝜔+ ⊒ 𝜔 (H5)

• 𝜌 𝑓 ♯ 𝜌 (H6)

Realistic Realizability: Specifying ABIs You Can Count On 47

• 𝜓 = 𝜔+ .sizes(H7)
• 𝜇 = erase(𝜌 • 𝜌 𝑓) (H8)

• 𝑘 < 𝜔+ .step(H9)

• 𝜔 ′ = ⟨step : 𝜔+.step − 𝑘, sizes : 𝜓 ′⟩ (H10)

• (𝜓, 𝜇, malloc (n)) →𝑘 (𝜓 ′, 𝜇′, e′) ↛(H11)

If we have H3, then for any 𝜔+ ⊒ 𝜔 , there exist no non-negative 𝑘 < 𝜔+.step, meaning that
wp (malloc (n)) {�̂�}(𝜔, 𝜌) holds vacuously. Otherwise, we may use H4 and must prove the exis-
tence of some 𝜌 ′ such that

• 𝜌 𝑓 ♯ 𝜌 ′ (G1)

• 𝜓 ′ ⊇ 𝜓 (G2)

• 𝜇′ = erase(𝜌 ′ • 𝜌 𝑓) (G3)
• e′ ∈ Word(G4)

• �̂� (e′) (𝜔 ′, 𝜌 ′) (G5)

Let 𝑏 ∈ N+ \ dom(𝜓). By inspecting the operational semantics, using this and 𝑛 > 0, we observe
that the evaluation in H11 must proceed as exactly (𝜓, 𝜇, malloc (n)) → (𝜓 ′, 𝜇′, ℓ) ↛(H12) , where

• 𝜓 ′ = 𝜓 [𝑏 ↦→ 𝑛] (H13)
• 𝜇′ = 𝜇 [⟨𝑏, 𝑖⟩ ↦→ h | 𝑖 < 𝑛] (H14)
• ℓ = ⟨𝑏, 0⟩ (H15)
• ℓ ∈ Word, solving G4
• 𝑘 = 1, so 𝜔 ′ = ⟨step : ▶𝜔+ .step, sizes : 𝜓 ′⟩ (H16)

Since 𝑏 ∉ dom(𝜓), 𝜓 ′ ⊇ 𝜓 , solving G2. Now, instantiate H4 with ℓ ∈ LocN+ , since 𝑏 ∈ N+ \
dom(𝜓). Instantiate the —★with 𝜔 ′ ⊒ ▶𝜔+ ⊒ ▶𝜔 . Observe that(

★𝑖<𝑛
(ℓ + 𝑖) ↦→ h

)
(𝜔 ′,•𝑖<𝑛 (ℓ + 𝑖) ↦→ unq(h))

holds, by unfolding ★ and ↦→. From H15, size (ℓ, 𝑛) (𝜔 ′,∅) holds; supplying both of these gives us
�̂� (ℓ) (𝜌 • •𝑖<𝑛 (ℓ + 𝑖) ↦→ unq(h)). This composition of resources is defined and valid, since the
location ℓ is at a fresh block 𝑏, appearing in neither𝜓 nor 𝜇
We assert 𝜌 ′ = 𝜌 • •𝑖<𝑛 (ℓ + 𝑖) ↦→ unq(h), which solves G5. Note that unfolding → in H12

tells us dom(𝜇) ⊆ span(𝜓). For any ℓ + 𝑖 = ⟨𝑏, 𝑖⟩, we know ℓ + 𝑖 is not in span(𝜓), as we selected
𝑏 ∉ dom(𝜓). If ℓ + 𝑖 were in dom(𝜌), then ℓ + 𝑖 would be in dom(𝜇) = dom(erase(𝜌 • 𝜌 𝑓)), which
is a contradiction. 𝜌 ′ is thus well-defined.
Furthermore, from the argument above, 𝜌 ′ • 𝜌 𝑓 must be defined as well, emphasizing that 𝜇 is

composed of 𝜌 and 𝜌 𝑓 . Its validity follows immediately from H6, since objs(𝜌 ′ • 𝜌 𝑓) = objs(𝜌 •
𝜌 𝑓); adding the extra•𝑖<𝑛 (ℓ+𝑖) ↦→ unq(h) does not change the reachable objects.Thus, G1 holds.
Finally, applying Unie ERasuRe SepaRability 𝑛 times gives us erase(𝜌 ′ • 𝜌 𝑓) = erase(𝜌 •
𝜌 𝑓) [⟨𝑏, 𝑖⟩ ↦→ h | 𝑖 < 𝑛] = 𝜇 [⟨𝑏, 𝑖⟩ ↦→ h | 𝑖 < 𝑛], solving G3. □

Lemma F.80 (wp-fRee).
(wp-fRee)(
★𝑖<𝑛

(ℓ + 𝑖) ↦→ wi

)
★ size (ℓ, 𝑛) ★ ▷ wp (e) {�̂�} ⊨ wp (free (ℓ) ; e) {�̂�}

PRoof. Unfolding ⊨, ★, ↦→, and size (−, −), suppose we have 𝜔 , 𝜌 , ℓ , 𝜌𝑒 , and a collections of 𝑛
resources 𝜌𝑖 such that

• ✓ 𝜌 (H1)

• 𝜌 = (•𝑖<𝑛𝜌𝑖) • 𝜌𝑒
(H2)

48 Andrew Wagner, Zachary Eisbach, and Amal Ahmed

• 𝜌𝑖 = (ℓ + 𝑖) ↦→ unq(wi) (H3)
• ℓ = ⟨𝑏, 0⟩ (H4)
• 𝜔.sizes(𝑏) = 𝑛 (H5)

• ▷ wp (e) {�̂�}(𝜔, 𝜌𝑒)
(H6)

Unfolding ▷ , this tells us that either
• 𝜔.step = 0(H7) , or
• 𝜔.step > 0 ∧ wp (e) {�̂�}(▶𝜔, 𝜌𝑒)

(H8)

Unfolding wp (−) {−}, suppose
• 𝜔+ ⊒ 𝜔 (H9)

• 𝜌 𝑓 ♯ 𝜌 (H10)

• 𝜓 = 𝜔+ .sizes(H11)
• 𝜇 = erase(𝜌 • 𝜌 𝑓) (H12)

• 𝑘 < 𝜔+ .step(H13)

• 𝜔 ′ = ⟨step : 𝜔+.step − 𝑘, sizes : 𝜓 ′⟩ (H14)

• (𝜓, 𝜇, free (ℓ) ; e) →𝑘 (𝜓 ′, 𝜇′, e′) ↛(H15)

If we have H7, then for any 𝜔+ ⊒ 𝜔 , there exist no non-negative 𝑘 < 𝜔+.step, meaning that
wp (free (ℓ) ; e) {�̂�}(𝜔, 𝜌) holds vacuously. Otherwise, we may use H8 and must prove the exis-
tence of some 𝜌 ′ such that

• 𝜌 𝑓 ♯ 𝜌 ′ (G1)

• 𝜓 ′ ⊇ 𝜓 (G2)

• 𝜇′ = erase(𝜌 ′ • 𝜌 𝑓) (G3)
• e′ ∈ Word(G4)

• �̂� (e′) (𝜔 ′, 𝜌 ′) (G5)

Unfolding ⊒ in H9 and pairing it with H11 and H5 ensures 𝜓 (𝑏) = 𝑛. Consider span(𝑏 ↦→ 𝑛);
by definition, this is exactly [⟨𝑏, 𝑖⟩ | 𝑖 < 𝑛]. Now, apply Unie ERasuRe SepaRability 𝑛 times
with 𝜇 = erase((•𝑖<𝑛𝜌𝑖) • 𝜌𝑒 • 𝜌 𝑓) to get 𝜇 = erase(𝜌𝑒 • 𝜌 𝑓) ⊎ [(𝑙 + 𝑖) ↦→ wi | 𝑖 < 𝑛] (H16) . Thus,
span(𝑏 ↦→ 𝑛) ⊆ dom(𝜇).

By inspecting the operational semantics, using the remarks above, we observe that the evalua-
tion in H15 must proceed as exactly

• (𝜓, 𝜇, free (ℓ) ; e) → (𝜓, 𝜇 \ span(𝑏 ↦→ 𝑛), e) →𝑘−1 (𝜓 ′, 𝜇′, e′) ↛(H17)

Now, instantiate wp (e) {�̂�}(▶𝜔, 𝜌𝑒) from H8 with
• ▶𝜔+ ⊒ ▶𝜔
• 𝜌 𝑓 ♯ 𝜌𝑒 , from H10
• 𝜓 = ▶𝜔+ .sizes = 𝜔+.sizes
• 𝜇 \ span(𝑏 ↦→ 𝑛) = erase(𝜌𝑒 • 𝜌 𝑓), from H16
• 𝑘 − 1 < ▶𝜔+.step
• 𝜔 ′ = ⟨step : ▶𝜔+.step − (𝑘 − 1), sizes : 𝜓 ′⟩ = ⟨step : 𝜔+.step − 𝑘, sizes : 𝜓 ′⟩

Note that ▶𝜔+ is defined, since 𝑘 < 𝜔+.step must be at least one in order to take the step in
H17. Also, ▶𝜔+ ⊒ ▶𝜔 and 𝑘 − 1 < ▶𝜔+ .step by unfolding ▶ in H9 and H13 respectively, so the
instantiation is valid. Providing (𝜓, 𝜇 \ span(𝑏 ↦→ 𝑛), e) →𝑘−1 (𝜓 ′, 𝜇′, e′) ↛ from H17 guarantees
the existence of some 𝜌 ′ that meets the conditions from above, solving all remaining goals. □

Realistic Realizability: Specifying ABIs You Can Count On 49

Lemma F.81 (wp-load).
(wp-load)

𝑃 ⊨⋄ ℓ ↦→ w

𝑃 ★ ▷
(
𝑃 —★ �̂� (w)

)
⊨ wp (∗ℓ) {�̂�}

PRoof. Unfolding ⊨ and ★, suppose we have 𝜔, 𝜌, 𝜌1, 𝜌2 such that
• ✓ 𝜌 (H1)

• 𝜌 = 𝜌1 • 𝜌2
(H2)

• 𝑃 (𝜔, 𝜌1) (H3)

• ▷
(
𝑃 —★ �̂� (w)

)
(𝜔, 𝜌2)

(H4)

Applying Valid Extension Antitonicity with 𝜌 to get✓ 𝜌1, so we can instantiate the premise
𝑃 ⊨⋄ ℓ ↦→ w with H3 to get (⋄ ℓ ↦→ w) (𝜔, 𝜌1). Unfolding⋄ and ↦→ gives us 𝜌1 —♦ ℓ ↦→ unq(w) (H5) .

Unfolding ▷ in H4, we also have either
• 𝜔.step = 0(H6) , or
• 𝜔.step > 0 ∧

(
𝑃 —★ �̂� (w)

)
(▶𝜔, 𝜌2)

(H7)

Now, unfolding wp (−) {−} in our goal wp (∗ℓ) {�̂�}(𝜔, 𝜌), suppose
• 𝜔+ ⊒ 𝜔 (H8)

• 𝜌 𝑓 ♯ 𝜌 (H9)

• 𝜓 = 𝜔+ .sizes(H10)
• 𝜇 = erase(𝜌 • 𝜌 𝑓) (H11)

• 𝑘 < 𝜔+ .step(H12)

• 𝜔 ′ = ⟨step : 𝜔+.step − 𝑘, sizes : 𝜓 ′⟩ (H13)

• (𝜓, 𝜇, ∗ℓ) →𝑘 (𝜓 ′, 𝜇′, e′) ↛(H14)

If we have H6, then for any 𝜔+ ⊒ 𝜔 , there exist no non-negative 𝑘 < 𝜔+.step, meaning that
wp (∗ℓ) {�̂�}(𝜔, 𝜌) holds vacuously. Otherwise, we may use H7 and must prove the existence of
some 𝜌 ′ such that

• 𝜌 𝑓 ♯ 𝜌 ′ (G1)

• 𝜓 ′ ⊇ 𝜓 (G2)

• 𝜇′ = erase(𝜌 ′ • 𝜌 𝑓) (G3)
• e′ ∈ Word(G4)

• �̂� (e′) (𝜔 ′, 𝜌 ′) (G5)

Now, note that (𝜌 • 𝜌 𝑓) —♦ 𝜌 —♦ 𝜌1 —♦ ℓ ↦→ unq(w) from H2 and H5. Additionally, ✓ (𝜌 • 𝜌 𝑓)
by unfolding ♯ in H9. Together with Unie Reachability ERasuRe, these imply that erase(𝜌 •
𝜌 𝑓) (ℓ) = 𝜇 (ℓ) = w.
By inspecting the operational semantics, using 𝜇 (ℓ) = w we observe that the evaluation in H14

must proceed as exactly (𝜓, 𝜇, ∗ℓ) → (𝜓 ′, 𝜇′, w) ↛(H15) , where
• 𝜓 = 𝜓 ′, solving G2
• e′ = w ∈ Word, solving G4
• 𝜇 = 𝜇′ (H16)

• 𝑘 = 1, so 𝜔 ′ = ▶𝜔+ (H17)

We assert that 𝜌 ′ = 𝜌 . H9 and H16 therefore solve G1 and G3 respectively. To solve G5, or
equivalently to prove �̂� (w)(▶𝜔+, 𝜌) we instantiate

(
𝑃 —★ �̂� (w)

)
(▶𝜔, 𝜌2) fromH7with▶𝜔+ ⊒ ▶𝜔 .

50 Andrew Wagner, Zachary Eisbach, and Amal Ahmed

Providing 𝑃 (▶𝜔+, 𝜌1) from H3 using the definition of Prd (as ▶𝜔+ ⊒ 𝜔) gives us �̂� (w)(▶𝜔+, 𝜌1 •
𝜌2) = �̂� (w) (▶𝜔+, 𝜌), using H1, solving G5, and completing the proof. □

Lemma F.82 (wp-stoRe).
(wp-stoRe)

ℓ ↦→ − ★ ▷
(
ℓ ↦→ w —★ wp (e) {�̂�}

)
⊨ wp (∗ℓ = w; e) {�̂�}

PRoof. Unfolding ⊨, ★, and ↦→, suppose we have 𝜔, 𝜌, 𝜌1, 𝜌2 such that
• ✓ 𝜌 (H1)

• 𝜌 = 𝜌1 • 𝜌2
(H2)

• 𝜌1 = ℓ ↦→ unq(−) (H3)

• ▷
(
ℓ ↦→ w —★ wp (e) {�̂�}

)
(𝜔, 𝜌2)

(H6)

Unfolding ▷ , this tells us that either
• 𝜔.step = 0(H5) , or
• 𝜔.step > 0 ∧

(
ℓ ↦→ w —★ wp (e) {�̂�}

)
(▶𝜔, 𝜌2)

(H6)

Unfolding wp (−) {−}, suppose
• 𝜔+ ⊒ 𝜔 (H7)

• 𝜌 𝑓 ♯ 𝜌 (H8)

• 𝜓 = 𝜔+ .sizes(H9)
• 𝜇 = erase(𝜌 • 𝜌 𝑓) (H10)

• 𝑘 < 𝜔+ .step(H11)

• 𝜔 ′ = ⟨step : 𝜔+.step − 𝑘, sizes : 𝜓 ′⟩ (H12)

• (𝜓, 𝜇, ∗ℓ = w; e) →𝑘 (𝜓 ′, 𝜇′, e′) ↛(H13)

If we have H5, then for any 𝜔+ ⊒ 𝜔 , there exist no non-negative 𝑘 < 𝜔+.step, meaning that
wp (∗ℓ = w; e) {�̂�}(𝜔, 𝜌) holds vacuously. Otherwise, wemay useH6 andmust prove the existence
of some 𝜌 ′ such that

• 𝜌 𝑓 ♯ 𝜌 ′ (G1)

• 𝜓 ′ ⊇ 𝜓 (G2)

• 𝜇′ = erase(𝜌 ′ • 𝜌 𝑓) (G3)
• e′ ∈ Word(G4)

• �̂� (e′) (𝜔 ′, 𝜌 ′) (G5)

Now, note that (𝜌 • 𝜌 𝑓) —♦ 𝜌 —♦ ℓ ↦→ unq(−) from H2 and H3. Additionally, ✓ (𝜌 • 𝜌 𝑓) by un-
folding ♯ inH8. Togetherwith UnieReachability ERasuRe, these imply that ℓ ∈ dom(erase(𝜌 •
𝜌 𝑓)) = dom(𝜇).
By inspecting the operational semantics, using ℓ ∈ dom(𝜇) we observe that the evaluation in

H13 must proceed as (𝜓, 𝜇, ∗ℓ = w; e) → (𝜓, 𝜇 [ℓ ↦→ w], e) →𝑘−1 (𝜓 ′, 𝜇′, e′) ↛(H14) . This first step
must always be taken before reaching an irreducible configuration.

Note that 𝜌2 ♯ 𝜌1 = 𝜌2 ♯ ℓ ↦→ unq(−), since their composition is defined and valid as exactly
𝜌 . Applying Unie Update Compatibility gives us 𝜌2 ♯ ℓ ↦→ unq(w). Let us call this valid
composition 𝜌w; we use it below.
Now, instantiate

(
ℓ ↦→ w —★ wp (e) {�̂�}

)
(▶𝜔, 𝜌2) with ▶𝜔 and (ℓ ↦→ w) (▶𝜔, ℓ ↦→ unq(w)),

which holds by ↦→ definition, to obtain wp (e) {�̂�}(▶𝜔, 𝜌w)
(H15) .

Realistic Realizability: Specifying ABIs You Can Count On 51

Before instantiating this, first observe (𝜌2 • 𝜌 𝑓) ♯ ℓ ↦→ unq(−) by unfolding ♯ in H8. Apply-
ing Unie Update Compatibility using this gives us (𝜌2 • 𝜌 𝑓) ♯ ℓ ↦→ unq(w) (H16) as well. Now,
apply Unie ERasuRe SepaRability using these facts to obtain

• 𝜇 = erase(𝜌 • 𝜌 𝑓) = erase(𝜌1 • (𝜌2 • 𝜌 𝑓)) = erase(𝜌2 • 𝜌 𝑓) ⊎ [ℓ ↦→ −] (H17)

• erase(𝜌w • 𝜌 𝑓) = erase(ℓ ↦→ unq(w) • (𝜌2 • 𝜌 𝑓)) = erase(𝜌2 • 𝜌 𝑓) ⊎ [ℓ ↦→ w] (H18)

Together, these observations let us deduce that erase(𝜌w • 𝜌 𝑓) = 𝜇 [ℓ ↦→ w].
We are finally ready to instantiate H15 with

• ▶𝜔+ ⊒ ▶𝜔
• 𝜌 𝑓 ♯ 𝜌w, by unfolding ♯ in H16
• 𝜓 = ▶𝜔+ .sizes = 𝜔+.sizes
• erase(𝜌w • 𝜌 𝑓) = 𝜇 [ℓ ↦→ w]
• 𝑘 − 1 < ▶𝜔+.step
• 𝜔 ′ = ⟨step : ▶𝜔+.step − (𝑘 − 1), sizes : 𝜓 ′⟩ = ⟨step : 𝜔+.step − 𝑘, sizes : 𝜓 ′⟩

Note that ▶𝜔+ is defined, since 𝑘 < 𝜔+.step must be at least one in order to take the step in
H14. Also, ▶𝜔+ ⊒ ▶𝜔 and 𝑘 − 1 < ▶𝜔+ .step by unfolding ▶ in H7 and H11 respectively, so the
instantiation is valid. Providing (𝜓, 𝜇 [ℓ ↦→ w], e) →𝑘−1 (𝜓 ′, 𝜇′, e′) ↛ from H14 guarantees the
existence of some 𝜌 ′ that meets the conditions from above, solving all remaining goals. □

Lemma F.83 (wp-incR-own).
(wp-incR-own)

𝑛′ = 𝑛 + 1

ℓ ↦→ n ★ ▷
(
ℓ ↦→ n′ —★ �̂� (n′)

)
⊨ wp (++ℓ) {�̂�}

PRoof. Unfolding ⊨, ★, and ↦→, suppose we have 𝜔, 𝜌, 𝜌1, 𝜌2 such that
• ✓ 𝜌 (H1)

• 𝜌 = 𝜌1 • 𝜌2
(H2)

• 𝜌1 = ℓ ↦→ unq(n) (H3)

• ▷
(
ℓ ↦→ n′ —★ �̂� (n′)

)
(𝜔, 𝜌2)

(H4)

Unfolding ▷ , this tells us that either
• 𝜔.step = 0(H5) , or
• 𝜔.step > 0 ∧

(
ℓ ↦→ n′ —★ �̂� (n′)

)
(▶𝜔, 𝜌2)

(H6)

Unfolding wp (−) {−}, suppose
• 𝜔+ ⊒ 𝜔 (H7)

• 𝜌 𝑓 ♯ 𝜌 (H8)

• 𝜓 = 𝜔+ .sizes(H9)
• 𝜇 = erase(𝜌 • 𝜌 𝑓) (H10)

• 𝑘 < 𝜔+ .step(H11)

• 𝜔 ′ = ⟨step : 𝜔+.step − 𝑘, sizes : 𝜓 ′⟩ (H12)

• (𝜓, 𝜇, ++ℓ) →𝑘 (𝜓 ′, 𝜇′, e′) ↛(H13)

If we have H5, then for any 𝜔+ ⊒ 𝜔 , there exist no non-negative 𝑘 < 𝜔+.step, meaning that
wp (++ℓ) {�̂�}(𝜔, 𝜌) holds vacuously. Otherwise, we may use H4 and must prove the existence of
some 𝜌 ′ such that

• 𝜌 𝑓 ♯ 𝜌 ′ (G1)

52 Andrew Wagner, Zachary Eisbach, and Amal Ahmed

• 𝜓 ′ ⊇ 𝜓 (G2)

• 𝜇′ = erase(𝜌 ′ • 𝜌 𝑓) (G3)
• e′ ∈ Word(G4)

• �̂� (e′) (𝜔 ′, 𝜌 ′) (G5)

Now, note that (𝜌 • 𝜌 𝑓) —♦ 𝜌 —♦ ℓ ↦→ unq(n) from H2 and H3. Additionally, ✓ (𝜌 • 𝜌 𝑓) by
unfolding ♯ in H8. Together with Unie Reachability ERasuRe, these imply that erase(𝜌 •
𝜌 𝑓) (ℓ) = 𝜇 (ℓ) = n.
By inspecting the operational semantics, using 𝜇 (ℓ) = n and 𝑛′ = 𝑛 + 1, we observe that the

evaluation in H13 must proceed as exactly (𝜓, 𝜇, ++ℓ) → (𝜓 ′, 𝜇′, n′) ↛(H14) , where
• 𝜓 = 𝜓 ′, solving G2
• n′ ∈ Word, solving G4
• 𝜇′ = 𝜇 [ℓ ↦→ 𝑛′] (H15)
• 𝑘 = 1, so 𝜔 ′ = ▶𝜔+ (H16)

We assert that 𝜌 ′ = 𝜌2 • ℓ ↦→ unq(n′). Observe that (𝜌2 • 𝜌 𝑓) ♯ ℓ ↦→ unq(n) by unfolding ♯
in H8. Applying Unie Update Compatibility using this gives us (𝜌2 • 𝜌 𝑓) ♯ ℓ ↦→ unq(n′) as
well. By ♯ definition, this solves G1.

Now, apply Unie ERasuRe SepaRability to the compatibility observations above to obtain
• erase(𝜌 • 𝜌 𝑓) = erase(𝜌1 • (𝜌2 • 𝜌 𝑓)) = erase(𝜌2 • 𝜌 𝑓) ⊎ [ℓ ↦→ n] (H17)

• erase(𝜌 ′ • 𝜌 𝑓) = erase(ℓ ↦→ unq(n′) • (𝜌2 • 𝜌 𝑓)) = erase(𝜌2 • 𝜌 𝑓) ⊎ [ℓ ↦→ n′] (H18)

Together, these observations let us deduce that 𝜇′ = 𝜇 [ℓ ↦→ n′] = erase(𝜌 ′ • 𝜌 𝑓), solving G3.
To solve G5, or equivalently to prove �̂� (n′) (▶𝜔+, 𝜌 ′) we instantiate

(
ℓ ↦→ n′ —★ �̂� (n′)

)
(▶𝜔, 𝜌2)

from H6 with ▶𝜔+ ⊒ ▶𝜔 . Providing (ℓ ↦→ n′) (▶𝜔+, ℓ ↦→ unq(n′)), which holds by ↦→ definition,
gives us �̂� (n′) (▶𝜔+, 𝜌2 • ℓ ↦→ unq(n′)) = �̂� (n′) (▶𝜔+, 𝜌 ′), solving G5 and completing the proof.

□

Lemma F.84 (wp-decR-own).
(wp-decR-own)

𝑛′ = 𝑛 − 1

ℓ ↦→ n ★ ▷
(
ℓ ↦→ n′ —★ �̂� (n′)

)
⊨ wp (−−ℓ) {�̂�}

PRoof. Unfolding ⊨, ★, and ↦→, suppose we have 𝜔, 𝜌, 𝜌1, 𝜌2 such that
• ✓ 𝜌 (H1)

• 𝜌 = 𝜌1 • 𝜌2
(H2)

• 𝜌1 = ℓ ↦→ unq(n) (H3)

• ▷
(
ℓ ↦→ n′ —★ �̂� (n′)

)
(𝜔, 𝜌2)

(H4)

Unfolding ▷ , this tells us that either
• 𝜔.step = 0(H5) , or
• 𝜔.step > 0 ∧

(
ℓ ↦→ n′ —★ �̂� (n′)

)
(▶𝜔, 𝜌2)

(H6)

Unfolding wp (−) {−}, suppose
• 𝜔+ ⊒ 𝜔 (H7)

• 𝜌 𝑓 ♯ 𝜌 (H8)

• 𝜓 = 𝜔+ .sizes(H9)
• 𝜇 = erase(𝜌 • 𝜌 𝑓) (H10)

Realistic Realizability: Specifying ABIs You Can Count On 53

• 𝑘 < 𝜔+ .step(H11)

• 𝜔 ′ = ⟨step : 𝜔+.step − 𝑘, sizes : 𝜓 ′⟩ (H12)

• (𝜓, 𝜇,−−ℓ) →𝑘 (𝜓 ′, 𝜇′, e′) ↛(H13)

If we have H5, then for any 𝜔+ ⊒ 𝜔 , there exist no non-negative 𝑘 < 𝜔+.step, meaning that
wp (−−ℓ) {�̂�}(𝜔, 𝜌) holds vacuously. Otherwise, we may use H4 and must prove the existence of
some 𝜌 ′ such that

• 𝜌 𝑓 ♯ 𝜌 ′ (G1)

• 𝜓 ′ ⊇ 𝜓 (G2)

• 𝜇′ = erase(𝜌 ′ • 𝜌 𝑓) (G3)
• e′ ∈ Word(G4)

• �̂� (e′) (𝜔 ′, 𝜌 ′) (G5)

Now, note that (𝜌 • 𝜌 𝑓) —♦ 𝜌 —♦ ℓ ↦→ unq(n) from H2 and H3. Additionally, ✓ (𝜌 • 𝜌 𝑓) by
unfolding ♯ in H8. Together with Unie Reachability ERasuRe, these imply that erase(𝜌 •
𝜌 𝑓) (ℓ) = 𝜇 (ℓ) = n.
By inspecting the operational semantics, using 𝜇 (ℓ) = n and 𝑛′ = 𝑛 − 1, we observe that the

evaluation in H13 must proceed as exactly (𝜓, 𝜇,−−ℓ) → (𝜓 ′, 𝜇′, n′) ↛(H14) , where
• 𝜓 = 𝜓 ′, solving G2
• n′ ∈ Word, solving G4
• 𝜇′ = 𝜇 [ℓ ↦→ 𝑛′] (H15)
• 𝑘 = 1, so 𝜔 ′ = ▶𝜔+ (H16)

We assert that 𝜌 ′ = 𝜌2 • ℓ ↦→ unq(n′). Observe that (𝜌2 • 𝜌 𝑓) ♯ ℓ ↦→ unq(n) by unfolding ♯
in H8. Applying Unie Update Compatibility using this gives us (𝜌2 • 𝜌 𝑓) ♯ ℓ ↦→ unq(n′) as
well. By ♯ definition, this solves G1.

Now, apply Unie ERasuRe SepaRability to the compatibility observations above to obtain
• erase(𝜌 • 𝜌 𝑓) = erase(𝜌1 • (𝜌2 • 𝜌 𝑓)) = erase(𝜌2 • 𝜌 𝑓) ⊎ [ℓ ↦→ n] (H17)

• erase(𝜌 ′ • 𝜌 𝑓) = erase(ℓ ↦→ unq(n′) • (𝜌2 • 𝜌 𝑓)) = erase(𝜌2 • 𝜌 𝑓) ⊎ [ℓ ↦→ n′] (H18)

Together, these observations let us deduce that 𝜇′ = 𝜇 [ℓ ↦→ n′] = erase(𝜌 ′ • 𝜌 𝑓), solving G3.
To solve G5, or equivalently to prove �̂� (n′) (▶𝜔+, 𝜌 ′) we instantiate

(
ℓ ↦→ n′ —★ �̂� (n′)

)
(▶𝜔, 𝜌2)

from H6 with ▶𝜔+ ⊒ ▶𝜔 . Providing (ℓ ↦→ n′) (▶𝜔+, ℓ ↦→ unq(n′)), which holds by ↦→ definition,
gives us �̂� (n′) (▶𝜔+, 𝜌2 • ℓ ↦→ unq(n′)) = �̂� (n′) (▶𝜔+, 𝜌 ′), solving G5 and completing the proof.

□

Lemma F.85 (wp-incR-shaRe).
(wp-incR-shaRe)

𝑃 ⊨⋄@ℓ 𝑄

𝑃 ★ ▷
(
∀ 𝑛 > 1. 𝑃 —★@ℓ 𝑄 —★ �̂�(n)

)
⊨ wp (++ℓ) {�̂�}

PRoof. Unfolding ⊨ and ★, suppose we have 𝜔, 𝜌, 𝜌1, 𝜌2 such that
• ✓ 𝜌 (H1)

• 𝜌 = 𝜌1 • 𝜌2
(H2)

• 𝑃 (𝜔, 𝜌1) (H3)

• ▷
(
∀ 𝑛 > 1. 𝑃 —★@ℓ 𝑄 —★ �̂�(n)

)
(𝜔, 𝜌2)

(H4)

Unfolding ▷ , this tells us that either

54 Andrew Wagner, Zachary Eisbach, and Amal Ahmed

• 𝜔.step = 0(H5) , or
• 𝜔.step > 0 ∧

(
∀ 𝑛 > 1. 𝑃 —★@ℓ 𝑄 —★ �̂�(n)

)
(▶𝜔, 𝜌2)

(H6)

Unfolding wp (−) {−}, suppose
• 𝜔+ ⊒ 𝜔 (H7)

• 𝜌 𝑓 ♯ 𝜌 (H8)

• 𝜓 = 𝜔+ .sizes(H9)
• 𝜇 = erase(𝜌 • 𝜌 𝑓) (H10)

• 𝑘 < 𝜔+ .step(H11)

• 𝜔 ′ = ⟨step : 𝜔+.step − 𝑘, sizes : 𝜓 ′⟩ (H12)

• (𝜓, 𝜇, ++ℓ) →𝑘 (𝜓 ′, 𝜇′, e′) ↛(H13)

If we have H5, then for any 𝜔+ ⊒ 𝜔 , there exist no non-negative 𝑘 < 𝜔+.step, meaning that
wp (++ℓ) {�̂�}(𝜔, 𝜌) holds vacuously. Otherwise, we may use H6 and must prove the existence of
some 𝜌 ′ such that

• 𝜌 𝑓 ♯ 𝜌 ′ (G1)

• 𝜓 ′ ⊇ 𝜓 (G2)

• 𝜇′ = erase(𝜌 ′ • 𝜌 𝑓) (G3)
• e′ ∈ Word(G4)

• �̂�(e′) (𝜔 ′, 𝜌 ′) (G5)

Now, instantiate the premise 𝑃 ⊨⋄@ℓ 𝑄 withwith H3 (noting✓ 𝜌1 using Valid ExtensionAn-
titonicity with H1) to obtain⋄@ℓ 𝑄 (𝜔, 𝜌1). Unfolding⋄ and@ℓ , this guarantees the existence
of some 𝜌𝑞 such that 𝜌1 —♦ ℓ ↦→ shr(1, 𝜌𝑞) ∧𝑄 (𝜔, 𝜌𝑞) (H14) .

Now, we use 𝜌 • 𝜌 𝑓 —♦ 𝜌1 —♦ ℓ ↦→ shr(1, 𝜌𝑞) with ShaRed Reachability ERasuRe (since 𝜌 • 𝜌 𝑓
is valid by H8) to obtain erase(𝜌 • 𝜌 𝑓)(ℓ) = 𝜇 (ℓ) = n(H15) for some n ≥ 1.
Now, let 𝑛′ = 𝑛 + 1. By inspecting the operational semantics, using 𝜇 (ℓ) = n, we observe that

the evaluation in H13 must proceed as exactly (𝜓, 𝜇, ++ℓ) → (𝜓 ′, 𝜇′, n′) ↛(H16) , where
• 𝜓 = 𝜓 ′, solving G2
• n′ ∈ Word, solving G4
• 𝜇′ = 𝜇 [ℓ ↦→ 𝑛′] (H17)
• 𝑘 = 1, so 𝜔 ′ = ▶𝜔+ (H18)

To solve �̂�(e′)(𝜔 ′, 𝜌 ′) = �̂�(n′)(▶𝜔+, 𝜌 ′), wewill want to useH6withH3 andH14.Thismotivates
the assertion that 𝜌 ′ = 𝜌 • ℓ ↦→ shr(1, 𝜌𝑞). Instantiating H6 with 𝑛′ > 1, ▶𝜔+ ⊒ ▶𝜔 , 𝑃 (▶𝜔+, 𝜌1),
and 𝑄 (▶𝜔+, 𝜌𝑞) (invoking the monotonicity of Prd as appropriate) gives us �̂�(n′) (▶𝜔+, 𝜌1 • 𝜌2 •
𝜌𝑞), solving G5 with the choice of 𝜌 ′.
To prove G1, we can unfold and re-fold ♯ to equivalently obtain 𝜌 • 𝜌 𝑓 ♯ ℓ ↦→ shr(1, 𝜌𝑞) as a goal.

Since 𝜌 • 𝜌 𝑓 —♦ ℓ ↦→ shr(1, 𝜌𝑞) and ✓ (𝜌 • 𝜌 𝑓), as noted above, applying ShaRed Reachability
IncRementability solves G1.
Finally, we must show 𝜇′ = 𝜇 [ℓ ↦→ 𝑛′] = erase(𝜌 ′ • 𝜌 𝑓). To do so, note that objs(𝜌 ′ • 𝜌 𝑓) =

objs(𝜌 • 𝜌 𝑓), by applying Object Composition with the observation that any object of ℓ ↦→
shr(1, 𝜌𝑞) is already included in objs(𝜌 • 𝜌 𝑓), since 𝜌 • 𝜌 𝑓 —♦ ℓ ↦→ shr(1, 𝜌𝑞). Therefore,

erase(𝜌 ′ • 𝜌 𝑓) =
[
ℓ ′ ↦→ erase(𝜒) | ℓ ′ ↦→ 𝜒 ∈ 𝜌 ′ • 𝜌 𝑓 •

(•(ℓ0,𝜌0) ∈objs(𝜌 ′•𝜌𝑓)𝜌0
)]

=
[
ℓ ′ ↦→ erase(𝜒) | ℓ ′ ↦→ 𝜒 ∈ ℓ ↦→ shr(1, 𝜌𝑞) • 𝜌 • 𝜌 𝑓 •

(•(ℓ0,𝜌0) ∈objs(𝜌•𝜌𝑓)𝜌0
)]

Realistic Realizability: Specifying ABIs You Can Count On 55

But we know 𝜌 • 𝜌 𝑓 •
(•(ℓ0,𝜌0) ∈objs(𝜌•𝜌𝑓)𝜌0

)
maps ℓ to shr(𝑛, 𝜌𝑞) from H15 (noting the resource

that is shared must be 𝜌𝑞 for the composition to be defined, which it is by ✓ ’s definition), so
composing another shr(1, 𝜌𝑞) increments the reference count by one, while changing nothing else.
Therefore, erase(𝜌 ′ • 𝜌 𝑓) = 𝜇 [ℓ ↦→ 𝑛′] = 𝜇′, completing the proof. □

Lemma F.86 (wp-decR-shaRe).
(wp-decR-shaRe)

@ℓ 𝑃 ★ ▷
(
∀ 𝑛. (⌜𝑛 > 0⌝ ∨ (⌜𝑛 = 0⌝ ★ ℓ ↦→ 0 ★ 𝑃)) —★ �̂� (n)

)
⊨ wp (−−ℓ) {�̂�}

PRoof. Unfolding ⊨ and ★, suppose we have 𝜔, 𝜌, 𝜌1, 𝜌2 such that
• ✓ 𝜌 (H1)

• 𝜌 = 𝜌1 • 𝜌2
(H2)

• @ℓ 𝑃 (𝜔, 𝜌1) (H3)

• ▷
(
∀ 𝑛. (⌜𝑛 > 0⌝ ∨ (⌜𝑛 = 0⌝ ★ ℓ ↦→ 0 ★ 𝑃)) —★ �̂� (n)

)
(𝜔, 𝜌2)

(H4)

Unfolding ▷ , this tells us that either
• 𝜔.step = 0(H5) , or
• 𝜔.step > 0 ∧

(
∀ 𝑛. (⌜𝑛 > 0⌝ ∨ (⌜𝑛 = 0⌝ ★ ℓ ↦→ 0 ★ 𝑃)) —★ �̂� (n)

)
(▶𝜔, 𝜌2)

(H6)

Unfolding wp (−) {−}, suppose
• 𝜔+ ⊒ 𝜔 (H7)

• 𝜌 𝑓 ♯ 𝜌 (H8)

• 𝜓 = 𝜔+ .sizes(H9)
• 𝜇 = erase(𝜌 • 𝜌 𝑓) (H10)

• 𝑘 < 𝜔+ .step(H11)

• 𝜔 ′ = ⟨step : 𝜔+.step − 𝑘, sizes : 𝜓 ′⟩ (H12)

• (𝜓, 𝜇,−−ℓ) →𝑘 (𝜓 ′, 𝜇′, e′) ↛(H13)

If we have H5, then for any 𝜔+ ⊒ 𝜔 , there exist no non-negative 𝑘 < 𝜔+.step, meaning that
wp (−−ℓ) {�̂�}(𝜔, 𝜌) holds vacuously. Otherwise, we may use H6 and must prove the existence of
some 𝜌 ′ such that

• 𝜌 𝑓 ♯ 𝜌 ′ (G1)

• 𝜓 ′ ⊇ 𝜓 (G2)

• 𝜇′ = erase(𝜌 ′ • 𝜌 𝑓) (G3)
• e′ ∈ Word(G4)

• �̂� (e′) (𝜔 ′, 𝜌 ′) (G5)

Now, unfold @ℓ in H3 to obtain 𝜌1 = ℓ ↦→ shr(1, 𝜌𝑝) ∧ 𝑃 (𝜔, 𝜌𝑝) (H14) . for some 𝜌𝑝 . This means
we can instantiate ShaRed SubResouRce ERasuRe with ✓ 𝜌 • 𝜌 𝑓 from H8, along with 𝜌 • 𝜌 𝑓 =
𝜌1 • (𝜌2 • 𝜌 𝑓) where 𝜌1 (ℓ) = shr(1, 𝜌𝑝). Noting erase(𝜌 • 𝜌 𝑓) = 𝜇 gives us one of the two
following cases:

• 𝜇 (ℓ) = 1(H15) , with
– ℓ ∉ dom(𝜌2 • 𝜌 𝑓) (H16) and
– ∀ (ℓ0, 𝜌0) ∈ objs(𝜌 • 𝜌 𝑓). ℓ ∉ dom(𝜌0) (H17)

• 𝜇 (ℓ) > 1(H18) , with
– ℓ ∈ dom(𝜌2 • 𝜌 𝑓) (H19) or
– ∃ (ℓ0, 𝜌0) ∈ objs(𝜌2 • 𝜌 𝑓). ℓ ∈ dom(𝜌0) (H20)

56 Andrew Wagner, Zachary Eisbach, and Amal Ahmed

In either case, let 𝑛′ = 𝜇 (ℓ) − 1. By inspecting the operational semantics, we observe that the
evaluation in H13 must proceed as exactly (𝜓, 𝜇,−−ℓ) → (𝜓 ′, 𝜇′, n′) ↛(H21) , where

• 𝜓 = 𝜓 ′, solving G2
• n′ ∈ Word, solving G4
• 𝜇′ = 𝜇 [ℓ ↦→ 𝑛′] (H22)
• 𝑘 = 1, so 𝜔 ′ = ▶𝜔+ (H23)

We now consider each of the two cases above separately, based on the resulting 𝑛′ value:
Case: 𝑛′ > 0. Note that 𝑛′ > 0 exactly when 𝜇 (ℓ) > 1, giving us H19 and H20 to work with.
Instantiate H6 with 𝑛′. Since 𝑛′ > 0 holds, we can instantiate the resulting —★with ▶𝜔+ ⊒
▶𝜔 to obtain �̂� (n)(▶𝜔+, 𝜌2).
We assert 𝜌 ′ = 𝜌2. With H23 and the observation above, we solve G5. Since 𝜌 ♯ 𝜌 𝑓 and 𝜌 =
𝜌1 • 𝜌2, we have 𝜌2 ♯ 𝜌 𝑓 by unfolding ♯ and appealing to Valid Extension Antitonicity.
This solves G1.
To solve G3, we must prove erase(𝜌2 • 𝜌 𝑓) = 𝜇 [ℓ ↦→ 𝑛′]. Unfolding erase(−), we have

erase(𝜌2 • 𝜌 𝑓) =
[
ℓ ′ ↦→ erase(𝜒) | ℓ ′ ↦→ 𝜒 ∈ 𝜌2 • 𝜌 𝑓 •

(•(ℓ0,𝜌0) ∈objs(𝜌2•𝜌𝑓)𝜌0
)]

If we have H19, then (𝜌2 • 𝜌 𝑓)(ℓ) = shr(−, 𝜌𝑝), since ℓ is in the domain. If ℓ mapped to
a cell of any other form, that would contradict 𝜌 ♯ 𝜌 𝑓 . Similarly, if we have H20 then we
have 𝜌2 • 𝜌 𝑓 —♦ 𝜌0 —♦ ℓ ↦→ shr(−, 𝜌𝑝) by unfolding objs. In either case, 𝜌2 • 𝜌 𝑓 —♦ 𝜌𝑝 and
(ℓ, 𝜌𝑝) ∈ objs(𝜌2 • 𝜌 𝑓).
With this, we deduce objs(𝜌 • 𝜌 𝑓) = objs(𝜌2 • 𝜌 𝑓). By Object Composition, we have
objs(𝜌 • 𝜌 𝑓) = objs(𝜌1) ∪ objs(𝜌2 • 𝜌 𝑓). Since 𝜌1 = ℓ ↦→ shr(1, 𝜌𝑝), unfolding objs reveals
objs(𝜌1) = (ℓ, 𝜌𝑝) ∪ objs(𝜌𝑝). But both of these are contained in objs(𝜌2 • 𝜌 𝑓) by the
argument above.
With this, we can now unfold 𝜇 = erase(𝜌 • 𝜌 𝑓) and compare with the erasure above:

erase(𝜌 • 𝜌 𝑓) =
[
ℓ ′ ↦→ erase(𝜒) | ℓ ′ ↦→ 𝜒 ∈ 𝜌1 • 𝜌2 • 𝜌 𝑓 •

(•(ℓ0,𝜌0) ∈objs(𝜌•𝜌𝑓)𝜌0
)]

=
[
ℓ ′ ↦→ erase(𝜒) | ℓ ′ ↦→ 𝜒 ∈ 𝜌1 • 𝜌2 • 𝜌 𝑓 •

(•(ℓ0,𝜌0) ∈objs(𝜌2•𝜌𝑓)𝜌0
)]

This looks exactly like the erasure above. The only difference is that here, there is an extra
𝜌1 = ℓ ↦→ shr(𝑛, 𝜌𝑝) in the underlying composition. Observe that erasing a shared cell
yields its reference count, removing 𝜌1 from the composition will decrease the reference
count by 1, and the resulting composition will still contain some ℓ ↦→ shr(𝑛′, 𝜌𝑝). This
means that erase(𝜌2 • 𝜌 𝑓) is exactly erase(𝜌 • 𝜌 𝑓) = 𝜇, but with ℓ ↦→ 𝑛′ where 𝑛′ = 𝑛 − 1,
completing this case.

Case: 𝑛′ = 0. Note that 𝑛′ = 0 exactly when 𝜇 (ℓ) = 1, giving us H16 and H17 to work with.
Instantiate H6 with 𝑛′ = 0 to get

(
⌜0 > 0⌝ ∨ (⌜0 = 0⌝ ★ ℓ ↦→ 0 ★ 𝑃) —★ �̂� (n′)

)
(▶𝜔, 𝜌2).

Observe ℓ ↦→ unq(0) satisfies ℓ ↦→ 0 in any world, and 𝑃 (▶𝜔+, 𝜌𝑝) holds from H14 and
the definition of Prd. This means we can instantiate the —★ with ▶𝜔+ ⊒ ▶𝜔 and supply
ℓ ↦→ unq(0) • 𝜌𝑝 to obtain �̂� (n′)(▶𝜔+, 𝜌2 • ℓ ↦→ unq(0) • 𝜌𝑝).
We assert 𝜌 ′ = 𝜌2 • ℓ ↦→ unq(0) • 𝜌𝑝 . With H23 and the observation above, we solve G5.
It remains to prove 𝜌 ′ ♯ 𝜌 𝑓 and that erase(𝜌 ′ • 𝜌 𝑓) = 𝜇 [ℓ ↦→ 𝑛′].
Following the argument in the 𝑛′ > 0 case, observe objs(𝜌 • 𝜌 𝑓) = (ℓ, 𝜌𝑝) ∪ (𝜌2 • 𝜌𝑝 • 𝜌 𝑓).
Since, ℓ ↦→ unq(0) has no reachable objects, this is equivalent to stating
• objs(𝜌 • 𝜌 𝑓) = (ℓ, 𝜌𝑝) ∪ objs(𝜌 ′ • 𝜌 𝑓) (H24)

To prove 𝜌 ′ ♯ 𝜌 𝑓 , take arbitrary (ℓ3, 𝜌3), (ℓ4, 𝜌4) ∈ objs(𝜌 ′ • 𝜌 𝑓). We must prove

Realistic Realizability: Specifying ABIs You Can Count On 57

• 𝜌3 ♯sh 𝜌 ′ ♯ 𝜌 𝑓
(G6)

• (ℓ3 = ℓ4 ∧ 𝜌3 = 𝜌4) ∨ (ℓ3 ≠ ℓ4 ∧ 𝜌3 ♯sh 𝜌4) (G7)
Since (ℓ3, 𝜌3), (ℓ4, 𝜌4) ∈ objs(𝜌 • 𝜌 𝑓) by H24, and ✓ 𝜌 • 𝜌 𝑓 from H8, we can instantiate to
instantly solve G7 as well as obtain 𝜌3 ♯sh 𝜌1 • 𝜌2 • 𝜌 𝑓

(H25) .
To prove G6, we can reduce the proof obligation from 𝜌3 ♯sh 𝜌 ′ ♯ 𝜌 𝑓 to 𝜌3 ♯sh 𝜌2𝜌𝑝 ♯ 𝜌 𝑓 by
using H17, to deduce ℓ ∉ dom(𝜌3). Similarly, we can rewrite H25 as 𝜌3 ♯sh 𝜌2 • 𝜌 𝑓

(H26) by
the same logic.
Unfolding ♯sh, we must prove 𝜌3 (ℓ ′) ♯ 𝜌2 • 𝜌𝑝 • 𝜌 𝑓 (ℓ ′) for all ℓ ′ in both domains. If
ℓ ′ ∈ dom(𝜌2 • 𝜌 𝑓), we can instantiate H26 to obtain the needed compatibility. Otherwise,
ℓ ′ ∈ dom(𝜌3) ∩ dom(𝜌𝑝). Instantiating ✓ 𝜌 • 𝜌 𝑓 with (ℓ3, 𝜌3) and (ℓ, 𝜌𝑝), gives us exactly
𝜌3 ♯sh 𝜌𝑝 (since ℓ3 ≠ ℓ by H17), from which the final case follows.
Now, we turn to prove erase(𝜌 ′ • 𝜌 𝑓) = 𝜇 [ℓ ↦→ 𝑛′]. To do so, we will unfold erase(−) with
the goal of meeting in the middle with 𝜇 = erase(𝜌 • 𝜌 𝑓):

erase(𝜌′ • 𝜌 𝑓) =
[
ℓ′ ↦→ erase(𝜒) | ℓ′ ↦→ 𝜒 ∈ 𝜌′ • 𝜌 𝑓 •

(•(ℓ0,𝜌0) ∈objs(𝜌 ′•𝜌𝑓)𝜌0
)]

=
[
ℓ′ ↦→ erase(𝜒) | ℓ′ ↦→ 𝜒 ∈ 𝜌2 • ℓ ↦→ unq(0) • 𝜌𝑝 • 𝜌 𝑓 •

(•(ℓ0,𝜌0) ∈objs(𝜌 ′•𝜌𝑓)𝜌0
)]

=
[
ℓ′ ↦→ erase(𝜒) | ℓ′ ↦→ 𝜒 ∈ 𝜌2 • 𝜌𝑝 • 𝜌 𝑓 •

(•(ℓ0,𝜌0) ∈objs(𝜌 ′•𝜌𝑓)𝜌0
)]

⊎ [ℓ ↦→ 0]

We can move the ℓ ↦→ unq(0) out of the composition, since we know the composition
is defined from 𝜌 ′ ♯ 𝜌 𝑓 ; if anything else with ℓ in its domain were to be composed, the
resulting composition would be undefined.
We now consider 𝜇 = erase(𝜌 • 𝜌 𝑓) and manipulate it into a similar form. To do so, we
apply H24, along with both H16 and H17 to pull out ℓ :

erase(𝜌 • 𝜌 𝑓) =
[
ℓ ′ ↦→ erase(𝜒) | ℓ ′ ↦→ 𝜒 ∈ 𝜌 • 𝜌 𝑓 •

(•(ℓ0,𝜌0) ∈objs(𝜌•𝜌𝑓)𝜌0
)]

=
[
ℓ ′ ↦→ erase(𝜒) | ℓ ′ ↦→ 𝜒 ∈ 𝜌1 • 𝜌2 • 𝜌 𝑓 •

(•(ℓ0,𝜌0) ∈ (ℓ,𝜌𝑝)∪objs(𝜌 ′•𝜌𝑓)𝜌0
)]

=
[
ℓ ′ ↦→ erase(𝜒) | ℓ ′ ↦→ 𝜒 ∈ 𝜌2 • 𝜌𝑝 • 𝜌 𝑓 •

(•(ℓ0,𝜌0) ∈objs(𝜌 ′•𝜌𝑓)𝜌0
)]

⊎ [ℓ ↦→ 1]

Therefore, when we take 𝜇 and augment it to obtain 𝜇 [ℓ ↦→ 0], this changes erase(𝜌 • 𝜌 𝑓)
to exactly erase(𝜌 ′ • 𝜌 𝑓), solving G3 and completing the proof.

□

Lemma F.87 (wp-shaRe).
(wp-shaRe)
ℓ ↦→ 1 ★ 𝑃 ★ (@ℓ 𝑃 —★ wp (e) {�̂�}) ⊨ wp (e) {�̂�}

PRoof. Unfolding ⊨, ★, and ↦→, suppose we have 𝜔, 𝜌, 𝜌1, 𝜌2, 𝜌3 such that
• ✓ 𝜌 (H1)

• 𝜌 = 𝜌1 • 𝜌2 • 𝜌3
(H2)

• 𝜌1 = ℓ ↦→ unq(1) (H3)
• 𝑃 (𝜔, 𝜌2) (H4)

•
(
@ℓ 𝑃 —★ wp (e) {�̂�}

)
(𝜔, 𝜌3)

(H5)

Unfolding wp (−) {−}, suppose
• 𝜔+ ⊒ 𝜔 (H6)

58 Andrew Wagner, Zachary Eisbach, and Amal Ahmed

• 𝜌 𝑓 ♯ 𝜌 (H7)

• 𝜓 = 𝜔+ .sizes(H8)
• 𝜇 = erase(𝜌 • 𝜌 𝑓) (H9)

• 𝑘 < 𝜔+ .step(H10)

• 𝜔 ′ = ⟨step : 𝜔+.step − 𝑘, sizes : 𝜓 ′⟩ (H11)

• (𝜓, 𝜇, e) →𝑘 (𝜓 ′, 𝜇′, e′) ↛(H12)

We must prove the existence of some 𝜌 ′ such that

• 𝜌 𝑓 ♯ 𝜌 ′ (G1)

• 𝜓 ′ ⊇ 𝜓 (G2)

• 𝜇′ = erase(𝜌 ′ • 𝜌 𝑓) (G3)
• e′ ∈ Word(G4)

• �̂� (e′) (𝜔 ′, 𝜌 ′) (G5)

Now, let 𝜌ℓ = ℓ ↦→ shr(1, 𝜌2). By unfolding @ℓ , note that @ℓ 𝑃 (𝜔, 𝜌ℓ) holds using H4. We can
use this and 𝜔 ⊒ 𝜔 to instantiate H5, giving us wp (e) {�̂�}(𝜔, 𝜌3 • 𝜌ℓ).
Since 𝜌 𝑓 • 𝜌3 ♯ 𝜌1 • 𝜌2 by unfolding ♯ in H7, Unie ShaRed ConveRtibility gives us

𝜌 𝑓 • 𝜌3 ♯ 𝜌ℓ , or equivalently 𝜌 𝑓 ♯ 𝜌3 • 𝜌ℓ by Res Composition Associative. This allows us to
instantiate wp (e) {�̂�}(𝜔, 𝜌3 • 𝜌ℓ) with

• 𝜔+ ⊒ 𝜔
• 𝜌 𝑓 ♯ 𝜌3 • 𝜌ℓ
• 𝜓 = 𝜔+ .sizes
• erase(𝜌3 • 𝜌ℓ • 𝜌 𝑓)
• 𝑘 < 𝜔+ .step
• 𝜔 ′ = ⟨step : 𝜔+.step − 𝑘, sizes : 𝜓 ′⟩

It suffices to prove that erase(𝜌3 • 𝜌ℓ • 𝜌 𝑓) = 𝜇 (G6) . Once that is proved, providing H12 will
guarantee the existence of some 𝜌 ′ that solves all remaining goals above. To do so, first observe
that objs(𝜌ℓ) = (ℓ, 𝜌2) ∪ objs(𝜌2). Unfolding objs, clearly (ℓ, 𝜌2) is in the objects of 𝜌ℓ , by applying
—♦-sub. However, any other object that is reachable must go through 𝜌2 first, and thus must be
an element of objs(𝜌2). We can use this observation alongside Object Composition to obtain
objs(𝜌3 • 𝜌ℓ • 𝜌 𝑓) = objs(𝜌2 • 𝜌3 • 𝜌 𝑓) ∪ (ℓ, 𝜌2) (H13) .

Next, since 𝜌2 • 𝜌3 • 𝜌 𝑓 ♯ 𝜌1 by unfolding ♯ in H7, applying Unie ERasuRe SepaRability
yields

𝜇 = erase(𝜌 • 𝜌 𝑓)
= erase(𝜌2 • 𝜌3 • 𝜌 𝑓 • 𝜌1)
= erase(𝜌2 • 𝜌3 • 𝜌 𝑓 • ℓ ↦→ unq(1))
= erase(𝜌2 • 𝜌3 • 𝜌 𝑓) ⊎ [ℓ ↦→ 1]

Also, by Unie Domain Exclusion, we have that ℓ is not in the domain of 𝜌2 • 𝜌3 • 𝜌 𝑓 , or
in that of any of its objects. This, alongside H13 and the characterization of 𝜇 above, allow us to

Realistic Realizability: Specifying ABIs You Can Count On 59

deduce that erase(𝜌3 • 𝜌ℓ • 𝜌 𝑓) = 𝜇 through the following series of equalities:[
ℓ ′ ↦→ erase(𝜒) | ℓ ′ ↦→ 𝜒 ∈ 𝜌3 • 𝜌ℓ • 𝜌 𝑓 •

(•(ℓ0,𝜌0) ∈objs(𝜌3•𝜌ℓ•𝜌𝑓)𝜌0
)]

=
[
ℓ ′ ↦→ erase(𝜒) | ℓ ′ ↦→ 𝜒 ∈ 𝜌3 • (ℓ ↦→ shr(1, 𝜌2)) • 𝜌 𝑓 •

(•(ℓ0,𝜌0) ∈objs(𝜌2•𝜌3•𝜌𝑓)∪(ℓ,𝜌2)𝜌0
)]

=
[
ℓ ′ ↦→ erase(𝜒) | ℓ ′ ↦→ 𝜒 ∈ 𝜌2 • 𝜌3 • 𝜌 𝑓 •

(•(ℓ0,𝜌0) ∈objs(𝜌2•𝜌3•𝜌𝑓)𝜌0
)]

⊎ [ℓ ↦→ erase(shr(1, 𝜌2))]
= erase(𝜌2 • 𝜌3 • 𝜌 𝑓) ⊎ [ℓ ↦→ 1]
= 𝜇

The fact that ℓ is not found in the domain of the rest of the composition allows us to pull out
[ℓ ↦→ 1] using ℓ ↦→ shr(1, 𝜌2). We also pull out 𝜌2 from the object composition for clarity before
re-folding erase(−). This proves G6 and completes the proof. □

Lemma F.88 (ht-app).
(ht-app)
𝑃 ★ {𝑃} e {�̂�} ⊨ wp (e) {�̂�}

PRoof. Unfolding {−} − {−} , we must prove 𝑃 ★ !
(
𝑃 —★ wp (e) {�̂�}

)
⊨ wp (e) {�̂�}. By ! -L

and ★-mono, it suffices to prove 𝑃 ★
(
𝑃 —★ wp (e) {�̂�}

)
⊨ wp (e) {�̂�}, which follows from —★-

L. □

Lemma F.89 (wp-adeacy). If emp ⊨ wpF (e) {w. ⌜w ∈ Z⌝}, then okF (e).

PRoof. Unfolding emp, ⊨, and ok (since ✓ ∅), suppose we have 𝑘 ,𝜓 ′, 𝜇′, and e′ such that
• ∀𝜔. wpF (e) {w. ⌜w ∈ Z⌝}(𝜔,∅) (H1)

• F ⊢ (∅,∅, e) →𝑘 (𝜓 ′, 𝜇′, e′) ↛ (H2)

It remains to prove that e′ ∈ Z(G1) and 𝜇′ = ∅(G2) .
Let �̂� = ⟨step : 𝑘 + 1, sizes : ∅⟩ and instantiate H1 with �̂� . Unfolding wp (−) {−} tells us
∀𝜔+ ⊒ �̂�, 𝜌 𝑓 ♯ ∅, 𝑘 < 𝜔+ .step,𝜓 ′, 𝜇′, e′,𝜓 = 𝜔+.sizes, 𝜔 ′ = ⟨step : 𝜔+.step − 𝑘, sizes : 𝜓 ′⟩ .

F ⊢ (𝜓, erase(∅ • 𝜌 𝑓), e) →𝑘 (𝜓 ′, 𝜇′, e′) ↛
⇒ ∃ 𝜌 ′ ♯ 𝜌 𝑓 .𝜓 ′ ⊇ 𝜓 ∧ erase(𝜌 ′ • 𝜌 𝑓) = 𝜇′ ∧ e′ ∈ Word ∧ ⌜e′ ∈ Z⌝ (𝜔 ′, 𝜌 ′)

Instantiate this with �̂� ⊒ �̂� , ∅ ♯ ∅, 𝜓 ′, 𝜌 ′, and e′. Supplying H2 tells us that there exists some 𝜌 ′
where (among irrelevant things)

• erase(𝜌 ′ • ∅) = 𝜇′ (H3)

• ⌜e′ ∈ Z⌝ (𝜔 ′, 𝜌 ′) (H4)

By the definition of ⌜−⌝, G1 holds. Furthermore, 𝜌 ′ = ∅ necessarily, so erase(𝜌 ′ • ∅) = ∅ = 𝜇′,
solving G2. □

F.3 Properties of the ABI
Lemma F.90 (lR-val).

VJTK(w) ⊨ EJTK(w)
PRoof. By the definition of EJTK, wp-val, and Refl. □

Lemma F.91 (lR-bind).
EJT1K(e) ★ ∀ w. VJT1K(w) —★ EJT2K(K[w]) ⊨ EJT2K(K[e])

60 Andrew Wagner, Zachary Eisbach, and Amal Ahmed

PRoof. By the definition of EJTK and wp-bind, it suffices if

wp (e) {VJT1K} ★ ∀ w. VJT1K(w) —★ EJT2K(K[w]) ⊨ wp (e) {w. EJT2K(K[w])}
which follows by wp-Ramify. □

Lemma F.92 (lR-adeacy). If emp ⊨ EJZK𝜍F (e), then okF (e).

PRoof. By unfolding EJ−K,VJ−K, then UJ−K and applying wp-adeacy. □

Definition F.93 (Canonical Semantic Signature). Let Σ be a fully rigid signature. Its canonical se-
mantic signature is defined

L Σ MF ≜
[
X ↦→

〈
kind : k, sel :

[
si ↦→

〈
off : 𝑖, semty : ▷VJTiKL Σ M

F

〉
| 𝑖 < 𝑛

]〉
| Σ ∋ rigid k X {si : Ti

𝑖<𝑛}
]

Note the recursive use of L Σ M is justified by the use of ▷ . BecauseVJ−K is defined only in terms
of operations that are non-expansive and contractive with respect to the step-index, recursive uses
of L Σ M inside ofVJ−K are suitably guarded.

Lemma F.94 (SignatuRe Substitution UnRestRicted). SJΣKF(𝜍) is unrestricted:
SJΣKF (𝜍) ⊨ !SJΣKF (𝜍)

PRoof. Immediate from the definition of SJ−K using ! -idem. □

Lemma F.95 (C-weaK).

dom(𝛾 ′) ⊇ dom(𝛾) ⇒ CJΓK(𝛾) ⊨ CJΓK(𝛾 ′)
PRoof. Suppose we have dom(𝛾 ′) ⊇ dom(𝛾). Unfolding CJ−K and applying ★-mono, it suf-

fices to prove ⌜dom(𝛾) ⊇ dom(Γ)⌝ ⊨ ⌜dom(𝛾 ′) ⊇ dom(Γ)⌝. This follows by observing dom(𝛾 ′) ⊇
dom(𝛾) ⊇ dom(Γ). □

Lemma F.96 (C-split).
SJΣK(𝜍) ★ CJΓ1, Γ2K(𝛾) ⊨⊨ SJΣK(𝜍) ★ CJΓ1K(𝛾) ★ SJΣK(𝜍) ★ CJΓ2K(𝛾)

PRoof. By SignatuRe Substitution UnRestRicted, ! -unR and ★-mono, SJΣK(𝜍) is handled.
Unfolding CJ−K and ⌜−⌝, it remains to prove both

• dom(𝛾) ⊇ dom(Γ1, Γ2) ⇔ dom(𝛾) ⊇ dom(Γ1) ∧ dom(𝛾) ⊇ dom(Γ2) (G1)
• ★x:T∈Γ1,Γ2VJTK(𝛾 (x)) ⊨⊨★x:T∈Γ1VJTK(𝛾 (x)) ★★x:T∈Γ2VJTK(𝛾 (x)) (G2)

Note that each Γ is a multi-set (as evident from sRc-stat-dup), which does not change how Γ1, Γ2
is split into Γ1 and Γ2. G1 follows from dom(Γ1, Γ2) = dom(Γ1) ∪ dom(Γ2) and properties of ⊇. G2
follows from unfolding★, as each occurrence of any Γ1, Γ2 ∋ x : T appears in exactly one of Γ1 or
Γ2 by the definition of Γ1, Γ2. □

Lemma F.97 (C-cons).
• If Γ ∋ x : T, then

SJΣK(𝜍) ★ CJΓK(𝛾) ⊨ VJTK(𝛾 (x)) —★ (SJΣK(𝜍) ★ CJΓ, x : TK(𝛾))
• If x ∉ dom(Γ), then

SJΣK(𝜍) ★ CJΓK(𝛾) ⊨ ∀ w. VJTK(w) —★ (SJΣK(𝜍) ★ CJΓ, x : TK(𝛾 [w/x]))
PRoof. We prove each case separately, in similar ways. Note that if x ∉ dom(Γ), we can pick

an arbitrary w for the new substitution to map x to.

Realistic Realizability: Specifying ABIs You Can Count On 61

Case: Γ ∋ x : T By applying —★-R, cancelling SJΣK(𝜍), and unfolding CJ−K, it suffices if

⌜dom(𝛾) ⊇ dom(Γ)⌝ VJTiK(𝛾 (xi))xi:Ti∈Γ VJTK(𝛾 (x))
⌜dom(𝛾) ⊇ dom(Γ, x : T)⌝ VJTjK(𝛾 (xj))

xj :Tj∈Γ,x:T

Since dom(𝛾) ⊇ dom(Γ), it follows that dom(𝛾) ⊇ dom(Γ, x : T) as Γ ∋ x : T already.
Unfolding★ thus completes the proof.

Case: x ∉ dom(Γ) Applying ∀ -R, take an arbitrary w, then apply —★-R, cancel SJΣK(𝜍), and
unfold CJ−K. It therefore suffices if

⌜dom(𝛾) ⊇ dom(Γ)⌝ VJTiK(𝛾 (xi))xi:Ti∈Γ VJTK(w)
⌜dom(𝛾 [w/x]) ⊇ dom(Γ, x : T)⌝ VJTjK(𝛾 [w/x] (xj))

xj :Tj∈Γ,x:T

Since dom(𝛾) ⊇ dom(Γ), it follows that dom(𝛾 [w/x]) ⊇ dom(Γ, x : T), as we add x to the
domain of 𝛾 . Now, consider VJTjK(𝛾 [w/x] (xj)). If xj : Tj is exactly x : T, which occurs
once, then 𝛾 [w/x] (xj) = 𝛾 [w/x] (x) = w by the definition of substitution, even if x ∈
dom(𝛾). Otherwise, xj ≠ x and 𝛾 [w/x] (xj) = 𝛾 (xj). With these observations, unfolding★
completes the proof, since the remaining xj : Tj ∈ Γ are exactly the xi : Ti ∈ Γ.

□

Lemma F.98 (C-uncons). If Γ ∋ x : T, then
SJΣK(𝜍) ★ CJΓK(𝛾) ⊨ VJTK(𝛾 (x)) ★ (VJTK(𝛾 (x)) —★ (SJΣK(𝜍) ★ CJΓK(𝛾)))

PRoof. Unfolding CJ−K, we must prove

SJΣK(𝜍) ⌜dom(𝛾) ⊇ dom(Γ)⌝ VJT′K(𝛾 (x′))
x′ :T′ ∈Γ

VJTK(𝛾 (x)) (VJTK(𝛾 (x)) —★ (SJΣK(𝜍) ★ CJΓK(𝛾)))
Since Γ ∋ x : T, we can apply★-mono, cancellingVJTK(𝛾 (x)), followed by —★-R to add it back. It
therefore suffices if

SJΣK(𝜍) ⌜dom(𝛾) ⊇ dom(Γ)⌝ VJT′K(𝛾 (x′))
x′ :T′ ∈Γ

SJΣK(𝜍) CJΓK(𝛾)
which follows by cancelling SJΣK(𝜍) and refolding CJ−K. □

F.4 Compiler Compliance
TheoRem F.99 (CompileR Compliance).

Σ; Γ ⊢ e : T ⇝ e ⊣ F ⇒ Σ; Γ ⊨F e : T

PRoof. By induction on the compilation derivation, in each case appealing to the appropriate
compatibility lemma in Compatibility Lemmas. □

Lemma F.100 (CRoss-CompileR LinKing). For any two compliant compilers ⇝1 and ⇝2, if
Σ; Γ1 ⊢ e1 : T1 ⇝1 e1 ⊣ F1 and Σ; Γ2, x : T1 ⊢ e2 : T2 ⇝2 e2 ⊣ F2 (with x ∉ Γ2), then Σ; Γ1, Γ2 ⊨F1,F2

const x = e1; e2 : T2.

PRoof. Follows immediately from Safe LinKing with the definition of compliant compilation.
□

Lemma F.101 (Safe LinKing). If Σ; Γ1 ⊨F1 e1 : T1 and Σ; Γ2, x : T1 ⊨F2 e2 : T2 (with x ∉ Γ2), then
Σ; Γ1, Γ2 ⊨F1,F2 const x = e1; e2 : T2.

62 Andrew Wagner, Zachary Eisbach, and Amal Ahmed

PRoof. Let F = F1, F2 and observe that Σ; Γ1 ⊨F1 e1 : T1 implies Σ; Γ1 ⊨F e1 : T1. This follows
by unfolding ⊨F1 with the observation that F ⊇ F1. Similarly, Σ; Γ2, x : T1 ⊨F2 e2 : T2 implies
Σ; Γ2, x : T1 ⊨F e2 : T2. The result then follows from comp-let-compat. □

TheoRem F.102 (CompileR Adeacy). If Σ;∅ ⊢ e : Z ⇝ e ⊣ F and Σ ⊣ F, then okF (e).

PRoof. In addition to Σ ⊣ F(H1) , applying CompileR Compliance gives us Σ;∅ ⊨F e : Z(H2) . Un-
folding ⊨F, this is

∀F′ ⊇ F, 𝜍, 𝛾 . SJΣKF′ (𝜍) ★ CJ∅K𝜍F′ (𝛾) ⊨ EJZK𝜍F′ (e[𝛾])
Since the context is ∅ and e’s free variables are exactly those in the context (which is easily con-
firmed by induction on the compilation relation), e must be closed and thus e[𝛾] = e. Unfolding
CJ−K reveals that CJ∅K𝜍F′ (𝛾) ⊨⊨ ⌜⊤⌝. Thus, we can simplify as

∀F′ ⊇ F, 𝜍 . SJΣKF′ (𝜍) ⊨ EJZK𝜍F′ (e) (H3)
By Canonical SignatuRe Satisfiable with H1, we have emp ⊨ SJΣKFL Σ M. Instantiating H3

with F ⊇ F and L Σ M, using tRans as well, we have

emp ⊨ EJZKL Σ M
F (e)

okF (e) now follows from lR-adeacy. □

Lemma F.103 (Canonical SignatuRe Satisfiable).

Σ ⊣ F ⇒ F ⊆ F′ ⇒ emp ⊨ SJΣKF′L Σ M
PRoof. Assume the premises Σ ⊣ F(H1) and F ⊆ F′ (H2) . Applying ▷ -ind, it suffices if

emp ∧ ▷ SJΣKF′L Σ MF′ ⊨ SJΣKF′L Σ MF′

Inverting H1 with comp-Σ, we have that every definition in Σ is rigid(H3) . Then L − M is defined and
ensures domL Σ MF′ = dom(Σ) (H4) . We now use ! -emp and ! -∧1 to transform the proof obligation
into

!
(
emp ∧ ▷ SJΣKF′L Σ MF′

)
⊨ SJΣKF′L Σ MF′

Unfolding S and applying ! -mono, we must show for arbitrary m k X {si : Ti
𝑖<𝑛} ∈ Σ that

emp ∧ ▷ SJΣKF′L Σ MF′

⌜dom(L Σ MF′) ⊇ dom(Σ)⌝ (G1) ⌜𝛿.kind = k⌝ (G2) ⌜dom(𝛿.sel) ⊇ {si | 𝑖 < 𝑛}⌝ (G3)

∀ 𝑖 < 𝑛. !wpF

(〈
selsi

X
〉

F′ ()
)
{w. ⌜w = 𝛿.sel(si).off⌝}

(G4)

∀ 𝑖 < 𝑛, w. 𝛿 .sel(si).semty(w) ≡ ▷VJTiKL Σ MF′
F (w)

(G5)

∀ ℓ . {ℓ ↦→ 0 ★ 𝛿.obj(ℓ + 1)} ⟨destrX⟩F (ℓ) {emp}F′
(G6)

⌜m = rigid ⇒ dom(𝛿.sel) ⊆ {si | 𝑖 < 𝑛} ∧ ∀ 𝑖 < 𝑛. 𝛿 .sel(si).off = 𝑖⌝ (G7)

where
𝛿 = L Σ MF′ (X) =

〈
kind : k, sel :

[
si ↦→

〈
off : 𝑖, semty : ▷VJTiKL Σ MF′

F′

〉]〉 (H5)
G1 holds by H4. G2 and G3 hold by H5. G7 holds by H3 and H5. G5 follows from H5 with ≡-Refl.
Now, rewriting with SignatuRe Substitution UnRestRicted (implicitly using ∧-mono and ▷ -
mono), we can apply ▷ -! to transform the premise into !▷

(
SJΣKF′L Σ MF′

)
. Then by ! -unR, it

suffices to use this information in order to prove the following two goals:

Realistic Realizability: Specifying ABIs You Can Count On 63

• For G4, it suffices by ∀ -R and ! -mono if for all 𝑖 < 𝑛

▷ SJΣKF′ (𝜍) ⊨ wpF

(〈
selsi

X
〉

F′ ()
)
{w. ⌜w = 𝛿.sel(si).off⌝}

Inverting H1 with comp-Σ, we have F ∋ selsi
X ()

{
sel si

Σ.X
} (H6) . Then by wp-app with H6

and ▷ -mono, it suffices if

SJΣKF′ (𝜍) ⊨ wpF

(
sel si

Σ.X

)
{w. ⌜w = 𝛿.sel(si).off⌝}

which follows from sel and H5.
• For G6, by ∀ -R, unfolding {−} − {−} , ! -mono, and —★-R, it suffices if for all ℓ ,

▷ SJΣKF′ (𝜍) ℓ ↦→ 0 𝛿.obj(ℓ + 1)
wpF′ (⟨destrX⟩F (ℓ)) {emp}

Inverting H1 with comp-Σ, we have F ∋ destrX (r)
{
destr Σ

X (r)
} (H7) . Then by wp-app

with H7, ▷ -R, and ▷ -mono, it suffices if
SJΣKF′ (𝜍) ℓ ↦→ 0 𝛿.obj(ℓ + 1)

wpF′
(
destr Σ

X (ℓ)
)
{emp}

which follows from dRop then destRoy with H5 and OJ−K.
□

Lemma F.104 (SignatuRe Satisfiable). For any Σ, there exists a F, 𝜍 such that emp ⊨ SJΣKF (𝜍).

PRoof. Take Σ′ to be the same as Σ but with every flex definition marked rigid. Then take F to
satisfy Σ′ ⊣ F (which must exist, by comp-Σ). Then apply Canonical SignatuRe Satisfiable and
use SignatuRe PReseRvation for each X ∈ Σ′. □

Lemma F.105 (dup).
𝑃 ⊨⋄VJTK(w)

𝑃 ★
(
∀ 𝑛. 𝑃 —★VJTK(w) —★ �̂� (n)

)
⊨ wp

(
dup T (w)

)
{�̂�}

PRoof. By cases on T.
Case: T = Z. UnfoldingVJ−K, UJ−K, and dup T (−), it suffices if

𝑃 ∀ 𝑛. 𝑃 —★ ⌜w ∈ Z⌝ —★ �̂� (n)
wp (−1) {�̂�}

given the premise
𝑃 ⊨⋄⌜w ∈ Z⌝ (H1)

By wp-val, ∀ -L, and —★-L, it suffices if
𝑃 ⊨ 𝑃 ★ ⌜w ∈ Z⌝

which follows from H1 with ! -⌜−⌝,⋄ -! , and ! -unR.
Case: T ≠ Z Unfolding VJ−K, RJ−K, and dup T (−), it suffices if

𝑃 ∀ 𝑛. 𝑃 —★ (⌜w ∈ Loc \ null⌝ ★@w OJTK(w + 1)) —★ �̂� (n)
wp (++w) {�̂�}

given
𝑃 ⊨⋄ (⌜w ∈ Loc \ null⌝ ★@w OJTK(w + 1)) (H2)

64 Andrew Wagner, Zachary Eisbach, and Amal Ahmed

Applying ⋄ -dRop and ⋄ -! with H2, followed by ⌜−⌝-L, we learn w ∈ Loc \ null(H3) , so
we rewrite for clarity

𝑃 ∀ 𝑛. 𝑃 —★ (⌜ℓ ∈ Loc \ null⌝ ★@ℓ OJTK(ℓ + 1)) —★ �̂� (n)
wp (++ℓ) {�̂�}

Applying wp-incR-shaRe with H2 and⋄ -dRop, and then ▷ -R, it suffices if

∀ 𝑛. 𝑃 —★ (⌜ℓ ∈ Loc \ null⌝ ★@ℓ OJTK(ℓ + 1)) —★ �̂� (n)
∀ 𝑛 > 1. 𝑃 —★@ℓ OJTK(ℓ + 1) —★ �̂� (n)

which is straightforward with H3.
□

Lemma F.106 (dRop).
SJΣKF (𝜍) ⊨ ∀ w, T ⊣ Σ. {VJTK𝜍F (w)} drop Σ

T (w) {emp}F

PRoof. Applying ▷ -ind, it suffices if
SJΣKF (𝜍) ∧ ▷ ∀ w, T ⊣ Σ. {VJTK𝜍F (w)} drop Σ

T (w) {emp}
∀ w, T ⊣ Σ. {VJTK𝜍F (w)} drop Σ

T (w) {emp}F

If Σ = ∅, then the goal is solved vacuously. Otherwise, we introduce arbitrary w and T at the
meta-level with ∀ -R and proceed by case analysis on T ⊣ Σ(H1) .

Case: T = Z. After using SignatuRe Substitution UnRestRicted, ! -∧1, and ! -idem, then
unfolding {−} − {−} , we can apply ! -mono and —★-R. It therefore suffices if

!
(
SJΣKF (𝜍) ∧ ▷ ∀ w, T ⊣ Σ. {VJTK𝜍F (w)} drop Σ

T (w) {emp}
)

VJZK𝜍F (w)
wpF

(
drop Σ

T (w)
)
{emp}

Unfolding the definitions of drop Z (−), VJZK, and UJ−K, we must prove

!
(
SJΣKF (𝜍) ∧ ▷ ∀ w, T ⊣ Σ. {VJTK𝜍F(w)} drop Σ

T (w) {emp}
)

⌜w ∈ Z⌝

wpF (−1) {emp}
which follows from wp-val, ! -⌜−⌝, and ! -dRop.

Case: T ≠ Z. Like above, we rewrite with SignatuRe Substitution UnRestRicted and ! -
∧1, then unfold {−} − {−} . Applying ! -mono and —★-R, then unfolding drop Σ

T (−),VJ−K,
and RJ−K, it suffices if

SJΣKF (𝜍) ∧ ▷ ∀ w, T ⊣ Σ. {VJTK𝜍F (w)} drop Σ
T (w) {emp}

⌜w ∈ Loc \ null⌝ @w OJTK𝜍F (w + 1)
wpF

(
const y = −−w; if (y) {y} else

{
destr Σ

T (w)
})

{emp}
With ⌜−⌝-L, rename w to ℓ for clarity. Manipulating with ▷ -R, ▷ -∧, and ▷ -★, it suffices if

▷
(
SJΣKF (𝜍) ∧ ∀ w, T ⊣ Σ. {VJTK𝜍F (w)} drop Σ

T (w) {emp}
)

@ℓ OJTK𝜍F (ℓ + 1)

wpF
(
const y = −−w; if (y) {y} else

{
destr Σ

T (w)
})

{emp}

We first use wp-bind and wp-decR-shaRe, cancelling @ℓ OJTK𝜍F(ℓ + 1) and applying ▷ -
mono. Then, after applying wp-let and ▷ -R, it suffices to consider two cases:

Realistic Realizability: Specifying ABIs You Can Count On 65

• We must show
SJΣKF (𝜍) ∧ ∀ w, T ⊣ Σ. {VJTK𝜍F (w)} drop Σ

T (w) {emp} ⌜𝑛 > 0⌝

wpF
(
if (n) {n} else

{
destr Σ

T (ℓ)
})

{emp}
which is straightforward fromwp-if-t and ▷ -R, using SignatuRe Substitution Un-
RestRicted, ! -∧1, ! -⌜−⌝, and ! -dRop.

• We must show
SJΣKF (𝜍) ∧ ∀ w, T ⊣ Σ. {VJTK𝜍F (w)} drop Σ

T (w) {emp}
SJΣKF (𝜍) ⌜𝑛 = 0⌝ ℓ ↦→ 0 OJTK𝜍F (ℓ + 1)
wpF

(
if (n) {n} else

{
destr Σ

T (ℓ)
})

{emp}
which follows by first applying wp-if-f and ▷ -R, then destRoy (with H1) after using
SignatuRe Substitution UnRestRicted, ! -∧1, ! -∧ /★, and ! -L.

□

Lemma F.107 (destRoy). If Σ ⊢ T, then

SJΣKF (𝜍) ∀ w, T ⊣ Σ. {VJTK𝜍F (w)} drop Σ
T (w) {emp}F

(H1)
ℓ ↦→ 0 OJTK𝜍F (ℓ + 1)

wpF
(
destr Σ

T (ℓ)
)
{emp}

PRoof. Assume Σ ⊢ T(H2) and proceed by cases on T.
Case: Z. Trivial because OJZK(ℓ) = ⊥.
Case: Ti

𝑖 → T. By O
r

Ti
𝑖 → T

z
and destr

Ti
𝑖→T

(−), with ! -dRop, it suffices if

ℓ ↦→ 0 ★ Self ★ {ℓ ↦→ 0 ★ Self } ⟨destr⟩F (ℓ) {emp}F ⊨ wpF (∗(ℓ + 2) (ℓ)) {emp}
where

Self = ℓ + 1 ↦→ ⟨call⟩F ★ ℓ + 2 ↦→ ⟨destr⟩F ★ Env

for some call, destr, and Env. This follows from wp-bop, wp-load, ⋄ -R, and ht-app
interspersed with wp-bind and ▷ -R.

Case: X. By OJXK, it suffices if

SJΣKF (𝜍) ∀ w, T ⊣ Σ. {VJTK𝜍F (w)} drop Σ
T (w) {emp}F ℓ ↦→ 0 𝜍 (X).obj(ℓ + 1)

wpF
(
destr Σ

T (ℓ)
)
{emp}

Note that by H2 and unfolding SJΣKF (𝜍), there is some 𝛿 = 𝜍 (X) (H3) . By H2, proceed by
cases on the mode of X.

Case: Σ ∋ flex k X {−}. By destr X (−) with ! -dRop, it suffices if

SJΣKF (𝜍) ★ ℓ ↦→ 0 ★ 𝛿.obj(ℓ + 1) ⊨ wpF (destrX (ℓ)) {emp}
which follows directly the definition of SJ−K, ! -dRop, and ht-app.
Case: Σ ∋ rigid k X {−}. By H3, SJ−K, ! -★, ! -dRop, and ⌜−⌝-L we have 𝛿.kind = k(H4) ,
along with 𝑛 = |dom(𝛿.sel) | (H5) , ∀ 𝑖 < 𝑛. 𝛿 .sel(si).off = 𝑖 (H6) , and

!∀ 𝑖 < 𝑛, w. 𝛿 .sel(si).semty(w) ≡ ▷VJTiK𝜍F (w)
∀ w, T ⊣ Σ. {VJTK𝜍F(w)} drop Σ

T (w) {emp}F ℓ ↦→ 0 𝜍 (X) .obj(ℓ + 1)
wpF

(
destr Σ

T (ℓ)
)
{emp}

Now proceed by cases on the kind of X.

66 Andrew Wagner, Zachary Eisbach, and Amal Ahmed

Case: k = struct First, rewrite with H3, 𝛿.obj using H4, H5, and destr Σ
T (−). If

𝑛 = 0, the proof is straightforward from ! -dRop, wp-fRee, ▷ -R, and wp-val.
Otherwise, by simplifying with H6 and ≡-l (using ! -unRmax(0, 𝑛 − 1) times), it
suffices if

∀ w, T ⊣ Σ. {VJTK𝜍F (w)} drop Σ
T (w) {emp}F

(H1)

ℓ ↦→ 0 size (ℓ, 1 + |𝑛 |) ℓ + 1 + 𝑖 ↦→ wsi

𝑖<𝑛
▷VJTiK𝜍F (wsi)

𝑖<𝑛

wpF

(
const xi = ℓ [i + 1]; drop Σ

Ti
(xi) ;

𝑖<𝑛

free (ℓ) ; 0
)
{emp}

for some wsi . By 𝑛 applications of wp-bop, wp-load with⋄ -R, wp-let, and the
premise H1 (noting that it is unrestricted as both domains are inhabited) with
H2 via wp-Ramify, all interspersed with wp-bind, ▷ -R, and ▷ -mono (to strip
the ▷ s off the VJ−Ks), it suffices if

ℓ ↦→ 0 size (ℓ, 1 + |𝑛 |) ℓ + 1 + 𝑖 ↦→ wsi

𝑖<𝑛

wpF (free (ℓ) ; 0) {emp}

which follows from wp-fRee, ▷ -R, and wp-val.
Case: k = enum First, rewrite with H3, 𝛿.obj using H4, H5, and destr Σ

T (−). By
simplifying with H6 and ≡-l, it suffices if

∀ w, T ⊣ Σ. {VJTK𝜍F (w)} drop Σ
T (w) {emp}F

ℓ ↦→ 0 size (ℓ, 3) ℓ + 1 ↦→ j ℓ + 2 ↦→ wsj ▷VJTjK𝜍F (wsj)

wpF
©« if (ℓ [1] = i)

{
const xi = ℓ [2]; drop Σ

Ti
(xi) ; free (ℓ) ; 0

}𝑖<𝑛

else {havoc}
ª®¬ {emp}

for some j and wsj . Unfolding −[−], by wp-bop and wp-load with ⋄ -R, fol-
lowed by wp-bind, ▷ -R, and ▷ -mono (to strip the ▷ off the VJ−K), it suffices
if

∀ w, T ⊣ Σ. {VJTK𝜍F (w)} drop Σ
T (w) {emp}F

ℓ ↦→ 0 size (ℓ, 3) ℓ + 1 ↦→ j ℓ + 2 ↦→ wsj VJTjK𝜍F (wsj)

wpF
©« if (j = i)

{
const xi = ℓ [2]; drop Σ

Ti
(xi) ; free (ℓ) ; 0

}𝑖<𝑛

else {havoc}
ª®¬ {emp}

Bymax(𝑗 −1, 0) applications of wp-bop and wp-if-f interspersed with wp-bind
and ▷ -R, it suffices if

∀ w, T ⊣ Σ. {VJTK𝜍F (w)} drop Σ
T (w) {emp}F

(H1)

ℓ ↦→ 0 size (ℓ, 3) ℓ + 1 ↦→ j ℓ + 2 ↦→ wsj VJTjK𝜍F (wsj)

wpF

©«
if (j = j)

{
const xi = ℓ [2]; drop Σ

Ti
(xi) ; free (ℓ) ; 0

}
else if (j = i)

{
const xi = ℓ [2]; drop Σ

Ti
(xi) ; free (ℓ) ; 0

} 𝑗<𝑖<𝑛

else {havoc}

ª®®®¬ {emp}

Bywp-bop, wp-if-t, thenwp-loadwith⋄ -R, all interspersedwithwp-bind and
▷ -R, it suffices if

Realistic Realizability: Specifying ABIs You Can Count On 67

∀ w, T ⊣ Σ. {VJTK𝜍F (w)} drop Σ
T (w) {emp}F

(H1)

ℓ ↦→ 0 size (ℓ, 3) ℓ + 1 ↦→ j ℓ + 2 ↦→ wsj VJTjK𝜍F (wsj)

wpF

(
drop Σ

Ti

(
wsj

)
; free (ℓ) ; 0

)
{emp}

By wp-seq and the premise H1 with H2 via ht-app and wp-Ramify, using both
wp-bind and ▷ -R, it suffices if
ℓ ↦→ 0 size (ℓ, 3) ℓ + 1 ↦→ j ℓ + 2 ↦→ wsj

wpF (free (ℓ) ; 0) {emp}
which follows from wp-fRee, ▷ -R, and wp-val.

□

Lemma F.108 (sel). If Σ ∋ m k X {si : Ti
𝑖<𝑛}, then for all 𝑗 < 𝑛

SJΣKF (𝜍) ★ ∀ 𝑛. ⌜𝑛 = 𝜍 (X).sel(sj).off⌝ —★ �̂� (n) ⊨ wpF

(
sel sj

Σ.X

)
{�̂�}

PRoof. Assume the premises Σ ∋ m k X {si : Ti
𝑖<𝑛}

(H1)
and 𝑗 < 𝑛 (H2) . By cases on m.

Case: m = rigid. Unfolding sel si
Σ.X, it suffices if

SJΣKF(𝜍) ★ ∀ 𝑛. ⌜𝑛 = 𝜍 (X) .sel(sj).off⌝ —★ �̂� (n) ⊨ wpF (j) {�̂�}

By the definition of S, ⌜−⌝-L, and SignatuRe Substitution UnRestRicted, it suffices if

∀ 𝑛. ⌜𝑛 = 𝑗⌝ —★ �̂� (n) ⊨ wpF (j) {�̂�}

which follows from wp-val.
Case: m = flex. Unfolding sel si

Σ.X, it suffices if

SJΣKF (𝜍) ★ ∀ 𝑛. ⌜𝑛 = 𝜍 (X).sel(sj).off⌝ —★ �̂� (n) ⊨ wpF

(
selsi

X ()
)
{�̂�}

By the definition of S, SignatuRe Substitution UnRestRicted, and ! -L, it suffices if

wpF

(〈
selsi

X
〉

F ()
)
{w. ⌜w = 𝛿.sel(si).off⌝} ∀ 𝑛. ⌜𝑛 = 𝜍 (X).sel(sj).off⌝ —★ �̂� (n)

wpF

(
selsi

X ()
)
{�̂�}

which follows from wp-bind, wp-funptR, and wp-Ramify.
□

F.4.1 Compatibility Lemmas.

Lemma F.109 (comp-let-compat).
(comp-let-compat)
Σ; Γ1 ⊨F e1 : T1 Σ; Γ2, x : T1 ⊨F e2 : T2 x ∉ dom(Γ2)

Σ; Γ1, Γ2 ⊨F const x = e1; e2 : T2

PRoof. Unfold ⊨ and consider arbitrary F′ ⊇ F, 𝜍, 𝛾 (H1) . Assume the premises Σ; Γ1 ⊨F e1 : T1
(H2) ,

Σ; Γ2, x : T1 ⊨F e2 : T2
(H3) , and x ∉ Γ2

(H4) . We must show

SJΣKF′ (𝜍) ★ CJΓ1, Γ2K𝜍F′ (𝛾) ⊨ EJT2K𝜍F′ (const x = e1; e2 [𝛾])

68 Andrew Wagner, Zachary Eisbach, and Amal Ahmed

By C-split and simplifying substitutions, it suffices if
SJΣKF′ (𝜍) CJΓ1K𝜍F′ (𝛾) SJΣKF′ (𝜍) CJΓ2K𝜍F′ (𝛾)

EJT2K𝜍F′ (const x = e1 [𝛾]; e2 [𝛾 \ x])
Then by C-cons with H4, it suffices if

SJΣKF′ (𝜍) CJΓ1K𝜍F′ (𝛾) ∀ w. VJT1K𝜍F′ (w) —★ (
SJΣKF′ (𝜍) ★ CJΓ2, x : T1K𝜍F′ (𝛾 [w/x]))

EJT2K𝜍F′ (const x = e1 [𝛾]; e2 [𝛾 \ x])
Observe that CJΓ2, x : T1K𝜍F′ (𝛾 [w/x]) ⊨ CJΓ2, x : T1K𝜍F′ ((𝛾 \ x) [w/x]), since the substitutions are
equivalent (noting [w/x] takes precedence). Applying this fact, H2, and H3, using H1 and —★-
mono, it suffices if

EJT1K𝜍F′ (e1 [𝛾]) ∀ w. VJT1KF′ (w) —★ EJT2K(e2 [𝛾 \ x] [w/x])
EJT2KF′ (const x = e1 [𝛾]; e2 [𝛾 \ x])

By lR-bind, it suffices if
VJT1K𝜍F′ (w) ∀ w. VJT1KF′ (w) —★ EJT2K(e2 [𝛾 \ x] [w/x])

EJT2KF′ (const x = w; e2 [𝛾 \ x])
which follows by —★-L, wp-let, and ▷ -R. □

Lemma F.110 (comp-vaR-compat).
(comp-vaR-compat)
Σ; x : T ⊨F x : T

PRoof. Unfold ⊨ and consider arbitrary F′ ⊇ F, 𝜍, 𝛾 , By SignatuRe SubstitutionUnRestRicted,
! -dRop, and lR-val, it suffices if

CJx : TK𝜍F′ (𝛾) ⊨ VJTK𝜍F′ (x[𝛾])
By CJ−K and ⌜−⌝-L, it suffices if

VJTK𝜍F′ (𝛾 (x)) ⊨ VJTK𝜍F′ (x[𝛾])
where x ∈ dom(𝛾), which follows by substitution. □

Lemma F.111 (comp-dup-compat).
(comp-dup-compat)
Γ ∋ x : T1 Σ; Γ, x : T1 ⊨F e : T2

Σ; Γ ⊨F dup T1 (x) ; e : T2

PRoof. Unfold ⊨ and consider arbitrary F′ ⊇ F, 𝜍, 𝛾 (H1) . Also assume the premises Γ ∋ x : T1
(H2)

and Σ; Γ, x : T1 ⊨F′ e : T2
(H3) . We must show

SJΣKF′ (𝜍) ★ CJΓK𝜍F′ (𝛾) ⊨ EJT2K𝜍F′ (dup T1 (𝛾 (x)) ; e[𝛾])
By C-uncons with H2, it suffices if

VJT1K𝜍F′ (𝛾 (x)) VJT1K𝜍F′ (𝛾 (x)) —★ (
SJΣKF′ (𝜍) ★ CJΓK𝜍F′ (𝛾))

EJT2K𝜍F′ (dup T1 (𝛾 (x)) ; e[𝛾])
By C-cons with H2 and —★-mono, it suffices if

VJT1K𝜍F′ (𝛾 (x)) VJT1K𝜍F′ (𝛾 (x)) —★ (
VJT1K𝜍F′ (𝛾 (x)) —★ (

SJΣKF′ (𝜍) ★ CJΓ, x : T1K𝜍F′ (𝛾)))
EJT2K𝜍F′ (dup T1 (𝛾 (x)) ; e[𝛾])

Realistic Realizability: Specifying ABIs You Can Count On 69

Then by H3 using H1 and —★-mono, followed by —★-cuRRy, it suffices if

VJT1K𝜍F′ (𝛾 (x)) (
VJT1K𝜍F′ (𝛾 (x)) ★VJT1K𝜍F′ (𝛾 (x))) —★ EJT2K𝜍F′ (e[𝛾])

EJT2K𝜍F′ (dup T1 (𝛾 (x)) ; e[𝛾])

By EJ−K and wp-seq, it suffices if

VJT1K(𝛾 (x)) (VJT1K(𝛾 (x)) ★VJT1K(𝛾 (x))) —★ EJT2K(e[𝛾])
wp

(
dup T1 (𝛾 (x))

)
{▷ EJT2K(e[𝛾])}

By wp-Ramify and ▷ -R, it suffices if

VJT1K(𝛾 (x)) ⊨ wp (
dup T1 (𝛾 (x))

)
{VJT1K(𝛾 (x)) ★VJT1K}

which is exactly dup. □

Lemma F.112 (comp-dRop-compat).
(comp-dRop-compat)

Σ; Γ ⊨F e : T2

Σ; Γ, x : T1 ⊨F drop Σ
T1

(x) ; e : T2

PRoof. Unfold ⊨ and consider arbitrary F′ ⊇ F, 𝜍, 𝛾 (H1) . Also assume the premise Σ; Γ ⊨F′ e : T2
(H2) .

We must show

SJΣKF′ (𝜍) ★ CJΓ, x : T1K𝜍F′ (𝛾) ⊨ EJT2K𝜍F′ (drop Σ
T1

(𝛾 (x)) ; e[𝛾])

By C-split, CJ−K, ! -dRop, and substitution, it suffices if

SJΣKF′ (𝜍) VJT1K𝜍F′ (𝛾 (x)) SJΣKF′ (𝜍) CJΓK𝜍F′ (𝛾)
EJT2K𝜍F′ (drop Σ

T1
(𝛾 (x)) ; e[𝛾])

By H2 with H1, it suffices if

SJΣKF′ (𝜍) VJT1K𝜍F′ (𝛾 (x)) EJT2K𝜍F′ (e[𝛾])
EJT2K𝜍F′ (drop Σ

T1
(𝛾 (x)) ; e[𝛾])

By EJ−K and wp-seq, it suffices if

SJΣKF′ (𝜍) ★VJT1K𝜍F (w) ★ EJT2K𝜍F (e[𝛾]) ⊨ wpF

(
drop Σ

T1
(𝛾 (x))

)
{▷ EJT2K𝜍F (e[𝛾])}

By wp-mono, ▷ -R, and —★-emp we can rewrite as

SJΣKF′ (𝜍) ★VJT1K𝜍F (w) ★ (
emp —★ EJT2K𝜍F (e[𝛾])) ⊨ wpF

(
drop Σ

T1
(𝛾 (x))

)
{EJT2K𝜍F (e[𝛾])}

Applying wp-Ramify, it suffices if

SJΣKF′ (𝜍) ★VJT1K𝜍F (w) ⊨ wpF

(
drop Σ

T1
(𝛾 (x))

)
{emp}

which follows from dRop. □

Lemma F.113 (comp-I-Z-compat).
(comp-I-Z-compat)
Σ;∅ ⊨F n : Z

70 Andrew Wagner, Zachary Eisbach, and Amal Ahmed

PRoof. Unfold ⊨ and consider arbitrary F′ ⊇ F, 𝜍, 𝛾 (H1) . By SignatuRe Substitution UnRe-
stRicted, ! -dRop, and lR-val, it suffices if

CJ∅K𝜍F′ (𝛾) ⊨ VJZK𝜍F′ (n[𝛾])
Unfolding CJ−K, VJ−K,UJ−K, and simplifying the substitution, it suffices if

⌜dom(𝛾) ⊇ dom(∅)⌝ ⊨ ⌜n ∈ Z⌝

which follows since dom(𝛾) ⊇ dom(∅) and n ∈ Z. □

Lemma F.114 (comp-⊕-Z-compat).
(comp-⊕-Z-compat)
Σ; Γ1 ⊨F e1 : Z Σ; Γ2 ⊨F e2 : Z

Σ; Γ1, Γ2 ⊨F e1 ⊕ e2 : Z

PRoof. Unfold ⊨ and consider arbitrary F′ ⊇ F, 𝜍, 𝛾 (H1) . Assume the premises Σ; Γ1 ⊨F e1 : Z(H2)

and Σ; Γ2 ⊨F e2 : Z(H3) . We must show

SJΣKF′ (𝜍) ★ CJΓ1, Γ2K𝜍F′ (𝛾) ⊨ EJZK𝜍F′ ((e1 ⊕ e2) [𝛾])

By C-split and simplifying substitutions, it suffices if

SJΣKF′ (𝜍) ★ CJΓ1K𝜍F′ (𝛾) ★ SJΣKF′ (𝜍) ★ CJΓ2K𝜍F′ (𝛾) ⊨ EJZK𝜍F′ (e1 [𝛾] ⊕ e2 [𝛾])

Then by H2 and H3 with H1, it suffices if

EJZK𝜍F′ (e1 [𝛾]) ★ EJZK𝜍F′ (e2 [𝛾]) ⊨ EJZK𝜍F′ (e1 [𝛾] ⊕ e2 [𝛾])

By lR-bind, ∀ -R, and —★-R, it suffices if

VJZK𝜍F′ (w1) ★ EJZK𝜍F′ (e2 [𝛾]) ⊨ EJZK𝜍F′ (w1 ⊕ e2 [𝛾])

Again, by lR-bind, ∀ -R, and —★-R, it suffices if

VJZK𝜍F′ (w1) ★VJZK𝜍F′ (w2) ⊨ EJZK𝜍F′ (w1 ⊕ w2)

By EJ−K, wp-bop, and ▷ -R, it suffices if

VJZK𝜍F′ (w1) ★VJZK𝜍F′ (w2) ⊨ VJZK𝜍F′ (J⊕K(w1, w2))

which follows after unfolding VJ−K, UJ−K, and J⊕K.
□

Lemma F.115 (comp-I→-compat).
(comp-I→-compat)

Γ = yj : Tj
𝑗<𝑚

Σ; Γ, zf : Ti
𝑖<𝑛 → T, xi : Ti

𝑖<𝑛
⊨F e : T Γ ∌ zf , x𝑖<𝑛 distinct

Σ; Γ ⊨F ef : Ti
𝑖<𝑛 → T

where

F ⊇

callk
(
zf, xi

𝑖<𝑛
) {

const yj = ∗(zf + 3 + j); dup Tj

(
yj

) 𝑗<𝑚
; e

}
,

destrk (zf)
{
const yj = ∗(zf + 3 + j); drop Σ

Tj

(
yj

) 𝑗<𝑚
; free (zf) ; 0

}

Realistic Realizability: Specifying ABIs You Can Count On 71

and

ef ≜

const zf = malloc (3 + m);
∗zf = 1;
∗(zf + 1) = callk;
∗(zf + 2) = destrk;

∗(zf + 3 + j) = yj;
𝑗<𝑚

zf

PRoof. Unfold ⊨ and consider arbitrary F′ ⊇ F(H1) , along with 𝜍 , 𝛾 . Also assume the premises

Γ = yj : Tj
𝑗<𝑚 (H2)

and Σ; Γ, zf : Ti
𝑖<𝑛 → T, xi : Ti

𝑖<𝑛
⊨F e : T

(H3)
. Simplifying substitutions via CJ−K

and H2, it suffices if

SJΣKF′ (𝜍) ★ CJΓK𝜍F′ (𝛾) ⊨ wp
©«

const zf = malloc (3 + m);
∗zf = 1;
∗(zf + 1) = callk;
∗(zf + 2) = destrk;

∗(zf + 3 + j) = (𝛾 \ zf)(yj);
𝑗<𝑚

zf

ª®®®®®®®¬
{V

r
Ti

𝑖<𝑛 → T
z𝜍

F′
}

Using zf ∉ yj : Tj
𝑗<𝑚

, we conclude that (𝛾 \ zf) (yj) = 𝛾 (yj) and simplify accordingly. By wp-bop,
wp-malloc, and wp-let interspersed with appropriate uses of wp-bind, ▷ -R, and —★-R, it suffices
if

SJΣKF′ (𝜍) CJΓK𝜍F′ (𝛾) ℓ + 𝑗 ↦→ h
𝑗<3+𝑚

size (ℓ, 3 +𝑚)

wp
(
∗ℓ = 1; ∗(ℓ + 1) = callk; ∗(ℓ + 2) = destrk; ∗(ℓ + 3 + j) = 𝛾 (yj);

𝑗<𝑚
ℓ
)
{V

r
Ti

𝑖<𝑛 → T
z𝜍

F′
}

where ℓ ≠ null(H4) by wp-malloc. By applying wp-stoRe three times, alongside wp-bop and
wp-funptR twice each (with appropriate uses of wp-bind, ▷ -R and —★-R in between) it suffices if

SJΣKF′ (𝜍) CJΓK𝜍F′ (𝛾)
ℓ ↦→ 1 ℓ + 1 ↦→ ⟨callk⟩F′ ℓ + 2 ↦→ ⟨destrk⟩F′ ℓ + 3 + 𝑗 ↦→ h

𝑗<𝑚

size (ℓ, 3 +𝑚)

wp
(
∗(ℓ + 3 + j) = 𝛾 (yj);

𝑗<𝑚

ℓ
)
{V

r
Ti

𝑖<𝑛 → T
z𝜍

F′
}

By unfolding CJ−K, along with𝑚 more applications of wp-bop and wp-stoRe, again interspersed
with wp-bind, ▷ -R and —★-R as fit, it suffices if

SJΣKF′ (𝜍) ℓ + 3 + 𝑗 ↦→ 𝛾 (yj) ★VJTjK(𝛾 (yj))
𝑗<𝑚

ℓ ↦→ 1 ℓ + 1 ↦→ ⟨callk⟩F′ ℓ + 2 ↦→ ⟨destrk⟩F′ size (ℓ, 3 +𝑚)

wp (ℓ) {V
r

Ti
𝑖<𝑛 → T

z𝜍

F′
}

Make the following abbreviations

Env ≜ ★𝑗<𝑚ℓ + 3 + 𝑗 ↦→ 𝛾 (yj) ★VJTjK(𝛾 (yj)) ★ size (ℓ, 3 +𝑚)
Self ≜ ℓ + 1 ↦→ ⟨callk⟩F′ ★ ℓ + 2 ↦→ ⟨destrk⟩F′ ★ Env

Then by wp-shaRe, —★-R, and wp-val, it suffices if

SJΣKF′ (𝜍) ★@ℓ Self ⊨ V
r

Ti
𝑖<𝑛 → T

z𝜍

F′
(ℓ)

72 Andrew Wagner, Zachary Eisbach, and Amal Ahmed

Applying —★-L and cancelling, we proceed by ▷ -ind. It suffices if

SJΣKF′ (𝜍) ∧ ▷
(
@ℓ Self —★V

r
Ti

𝑖<𝑛 → T
z𝜍

F′
(ℓ)

)
@ℓ Self —★V

r
Ti

𝑖<𝑛 → T
z𝜍

F′
(ℓ)

By —★-R, VJ−K with H4, OJ−K, @ -! with ! -{−} − {−} , and ∃ -R, it suffices if

@ℓ Self SJΣKF′ (𝜍) ∧ ▷
(
@ℓ Self —★V

r
Ti

𝑖<𝑛 → T
z𝜍

F′
(ℓ)

)
@ℓ Self {ℓ ↦→ 0 ★ Self } ⟨destrk⟩F′ (ℓ) {emp}

∀ wi
𝑖<𝑛 . {@ℓ Self ★★𝑖<𝑛VJTiK𝜍F′ (wi)} ⟨callk⟩F′

(
ℓ, wi

𝑖<𝑛
)
{VJTK𝜍F′ }

Cancelling@ℓ Self and applying SignatuRe Substitution UnRestRicted, ! -∧1, and ! -unR we
break the remaining proof obligation down into two goals:

• Simplifying with ! -L and ∧-L, we must show
SJΣKF′ (𝜍) ⊨ {ℓ ↦→ 0 ★ Self } ⟨destrk⟩F′ (ℓ) {emp}

Unfolding {−} − {−} , and applying SignatuRe Substitution UnRestRicted, ! -mono,
and —★-R, it suffices if

SJΣKF′ (𝜍) ★ ℓ ↦→ 0 ★ Self ⊨ wpF′ (⟨destrk⟩F′ (ℓ)) {emp}
By wp-app with destrk and H1, and ▷ -R, it suffices if

SJΣKF′ (𝜍) ℓ ↦→ 0 Self

wp
(
const yj = ∗(ℓ + 3 + j); drop Σ

Tj

(
yj

) 𝑗<𝑚
; free (ℓ) ; 0

)
{emp}

By𝑚 applications of wp-bop, wp-load, wp-let, wp-seq, and dRop, all interspersed with
applications of wp-bind, ▷ -R, —★-R,⋄ -R,⋄ -dRop, and ! -unR, along with appeals to the
definitions of Self and Env, it suffices if

ℓ ↦→ 0
ℓ + 1 ↦→ ⟨callk⟩F′ ℓ + 2 ↦→ ⟨destrk⟩F′ ℓ + 3 + 𝑗 ↦→ 𝛾 (yj)

𝑗<𝑚

size (ℓ, 3 +𝑚)
wp (free (ℓ) ; 0) {emp}

which holds by wp-fRee, ▷ -R, and wp-val.
• We must also show

!
(
SJΣKF′ (𝜍) ∧ ▷

(
@ℓ Self —★V

r
Ti

𝑖<𝑛 → T
z𝜍

F′
(ℓ)

))
∀ wi

𝑖<𝑛 . {@ℓ Self ★★𝑖<𝑛VJTiK𝜍F′ (wi)} ⟨callk⟩F′
(
ℓ, wi

𝑖<𝑛
)
{VJTK𝜍F′ }

Noting that Word is inhabited, applying ! -{−} − {−} , ! -∀ , ! -mono, ∀ -R, and —★-R it suf-
fices to show for all wi

𝑖<𝑛 that

SJΣKF′ (𝜍) ∧ ▷
(
@ℓ Self —★V

r
Ti

𝑖<𝑛 → T
z𝜍

F′
(ℓ)

)
@ℓ Self VJTiK𝜍F′ (wi)

𝑖<𝑛

wp
(
⟨callk⟩F′

(
ℓ, wi

𝑖<𝑛
))
{VJTKF′𝜍 }

By wp-app with callk and H1, it suffices if

SJΣKF′ (𝜍) ∧ ▷
(
@ℓ Self —★V

r
Ti

𝑖<𝑛 → T
z𝜍

F′
(ℓ)

)
@ℓ Self VJTiK𝜍F′ (wi)

𝑖<𝑛

▷ wp
(
const yj = ∗(ℓ + 3 + j); dup Tj

(
yj

) 𝑗<𝑚
; e[ℓ/zf, wi/xi

𝑖<𝑛]
)
{VJTK𝜍F′ }

Realistic Realizability: Specifying ABIs You Can Count On 73

Crucially, after ▷ -R (using ∧-mono) and ▷ -∧, we can apply ▷ -mono. It therefore suffices
if

SJΣKF′ (𝜍) ∧
(
@ℓ Self —★V

r
Ti

𝑖<𝑛 → T
z𝜍

F′
(ℓ)

)
@ℓ Self VJTiK𝜍F′ (wi)

𝑖<𝑛

wp
(
const yj = ∗(ℓ + 3 + j); dup Tj

(
yj

) 𝑗<𝑚
; e[ℓ/zf, wi/xi

𝑖<𝑛]
)
{VJTK𝜍F′ }

By𝑚 applications of wp-bop, wp-load, wp-let, wp-seq, and dup, all interspersed with ap-
plications of wp-bind,▷ -R, —★-R,⋄ -@ , and⋄ -dRop, along with appeals to the definitions
of Self and Env, it suffices if

SJΣKF′ (𝜍) ∧
(
@ℓ Self —★V

r
Ti

𝑖<𝑛 → T
z𝜍

F′
(ℓ)

)
@ℓ Self VJTiK𝜍F′ (wi)

𝑖<𝑛

VJTjK𝜍F′ (𝛾 (yj))
𝑗<𝑚

wp
(
e[ℓ/zf, wi/xi

𝑖<𝑛

, 𝛾 (yj)/yj
𝑗<𝑚]

)
{VJTK𝜍F′ }

By SignatuRe Substitution UnRestRicted, ! -∧1, ! -unR, ! -L, ∧-L, and —★-L, it suffices
if

SJΣKF′ (𝜍) V
r

Ti
𝑖<𝑛 → T

z
(ℓ) VJTiK𝜍F′ (wi)

𝑖<𝑛

VJTjK𝜍F′ (𝛾 (yj))
𝑗<𝑚

wp
(
e[ℓ/zf, wi/xi

𝑖<𝑛

, 𝛾 (yj)/yj
𝑗<𝑚]

)
{VJTK𝜍F′ }

which follows from H3 with H1 and the definitions of CJ−K and EJ−K.
□

Lemma F.116 (comp-E→-compat).
(comp-E→-compat)

Σ; Γ𝑖 ⊨F ei : Ti
𝑖<𝑛

Σ; Γ𝑓 ⊨F ef : Ti
𝑖<𝑛 → T

Σ; Γ𝑖
𝑖<𝑛

, Γ𝑓 ⊨F const xf = ef; (∗(xf + 1))
(
xf, ei

𝑖<𝑛
)
: T

PRoof. Unfold ⊨ and consider arbitrary F′ ⊇ F, 𝜍, 𝛾 (H1) . Assume that Σ; Γ𝑖 ⊨F ei : Ti
𝑖<𝑛 (H2)

and
Σ; Γ𝑓 ⊨F ef : Ti

𝑖<𝑛 → T
(H3)

. We must show

SJΣKF′ (𝜍) ★ C
r
Γ𝑖

𝑖
, Γ𝑓

z𝜍

F′
(𝛾) ⊨ EJTK𝜍F′ (const xf = ef; (∗(xf + 1))

(
xf, ei

𝑖
)
[𝛾])

By C-split and simplifying substitutions, it suffices if

SJΣKF′ (𝜍)
𝑖<𝑛

CJΓ𝑖K𝜍F′ (𝛾)𝑖<𝑛 SJΣKF′ (𝜍) CJΓ𝑓 K𝜍F′ (𝛾)
EJTK𝜍F′ (const xf = ef [𝛾]; (∗(xf + 1))

(
xf, ei [𝛾]

𝑖<𝑛
)
)

By H2 and H3 with H1, it suffices if

EJTiKF′ (ei [𝛾])
𝑖<𝑛

E
r

Ti
𝑖<𝑛 → T

z𝜍

F′
(ef [𝛾])

EJTK𝜍F′ (const xf = ef [𝛾]; (∗(xf + 1))
(
xf, ei [𝛾]

𝑖<𝑛
)
)

By lR-bind and wp-let with VJ−K, RJ−K, and OJ−K, it suffices if for any ℓ ∈ LocN+

EJTiKF′ (ei [𝛾])
𝑖<𝑛

@ℓ O
r

Ti
𝑖<𝑛 → T

z𝜍

F′
(ℓ + 1)

EJTK𝜍F′ ((∗(ℓ + 1))
(
ℓ, ei [𝛾]

𝑖<𝑛
)
)

74 Andrew Wagner, Zachary Eisbach, and Amal Ahmed

Unfolding OJ−K, this is
EJTiKF′ (ei [𝛾])

𝑖<𝑛

@ℓ

©«
∃ call, destr, Env. let Self = ℓ + 1 ↦→ ⟨call⟩F′ ★ ℓ + 2 ↦→ ⟨destr⟩F′ ★ Env in

Self

★ ∀ wi
𝑖<𝑛 .{★𝑖<𝑛VJTiK𝜍F (wi) ★@ℓ Self } ⟨call⟩F′ (ℓ, wi

𝑖<𝑛) {w. VJTK𝜍F (w)}F

★ {ℓ ↦→ 0 ★ Self } ⟨destr⟩F′ (ℓ) {emp}F

ª®®®¬
EJTK𝜍F′ ((∗(ℓ + 1))

(
ℓ, ei [𝛾]

𝑖<𝑛
)
)

Applying@ -∃ and ∃ -R, there exist call, destr, and Env. Abbreviate Self = ℓ +1 ↦→ ⟨call⟩F′ ★
ℓ + 2 ↦→ ⟨destr⟩F′ ★ Env, then observe that

!

(
∀ wi

𝑖<𝑛 .{★𝑖<𝑛VJTiK𝜍F (wi) ★@ℓ Self } call(ℓ, wi
𝑖<𝑛) {w. VJTK𝜍F (w)}F

★ {ℓ ↦→ 0 ★ Self } destr(ℓ) {emp}F

)
by applying ! -∀ (noting that the domain Word is inhabited), ! -{−} − {−} , and ! -★. By @ -! , ! -L,
and ! -dRop it suffices if

EJTiKF′ (ei [𝛾])
𝑖<𝑛

@ℓ Self ∀ wi
𝑖<𝑛 .{★𝑖<𝑛VJTiK𝜍F (wi) ★@ℓ Self } ⟨call⟩F′ (ℓ, wi

𝑖<𝑛) {w. VJTK𝜍F (w)}F

EJTK𝜍F′ ((∗(ℓ + 1))
(
ℓ, ei [𝛾]

𝑖<𝑛
)
)

By wp-bind and wp-load with ⋄ -@ , ⋄ -dRop, and ▷ -R, appealing to the definition of Self , it
suffices if

EJTiKF′ (ei [𝛾])
𝑖<𝑛

@ℓ Self ∀ wi
𝑖<𝑛 .{★𝑖<𝑛VJTiK𝜍F (wi) ★@ℓ Self } ⟨call⟩F′ (ℓ, wi

𝑖<𝑛) {w. VJTK𝜍F (w)}F

EJTK𝜍F′ (⟨call⟩F′

(
ℓ, ei [𝛾]

𝑖<𝑛
)
)

By 𝑛 applications of lR-bind, it suffices if

VJTiKF′ (wi)
𝑖<𝑛

@ℓ Self ∀ wi
𝑖<𝑛 .{★𝑖<𝑛VJTiK𝜍F (wi) ★@ℓ Self } ⟨call⟩F′ (ℓ, wi

𝑖<𝑛) {w. VJTK𝜍F (w)}F

EJTK𝜍F′ (⟨call⟩F′
(
ℓ, wi

𝑖<𝑛
)
)

which follows from EJ−K and ht-app.
□

Lemma F.117 (comp-I-struct-compat).
(comp-I-struct-compat)

Σ ∋ rigid struct X {si : T𝑖<𝑛} Σ; Γ𝑖 ⊨F ei : Ti
𝑖<𝑛

Σ; Γ𝑖
𝑖<𝑛

⊨F const x = malloc (n + 1); ∗x = 1; ∗(x + 1 + i) = ei;
𝑖<𝑛

x : X

PRoof. Unfold ⊨ and consider F′ ⊇ F, 𝜍, 𝛾 (H1) . Assume that Σ ∋ rigid struct X {si : T𝑖<𝑛}
(H2)

and
Σ; Γ𝑖 ⊨ ei : Ti

𝑖<𝑛 (H3)
. We must show

SJΣKF′ (𝜍) C
r
Γ𝑖

𝑖<𝑛
z𝜍

F′
(𝛾)

EJXK𝜍F′ (const x = malloc (n + 1); ∗x = 1; ∗(x + 1 + i) = ei [𝛾];
𝑖<𝑛

x)

Realistic Realizability: Specifying ABIs You Can Count On 75

By C-split, it suffices if

SJΣKF′ (𝜍)
𝑖<𝑛

CJΓ𝑖K𝜍F′ (𝛾)𝑖<𝑛
EJXK𝜍F′ (const x = malloc (n + 1); ∗x = 1; ∗(x + 1 + i) = ei [𝛾];

𝑖<𝑛

x)
By SignatuRe Substitution UnRestRicted and ! -unR, then H3 with H1 and ⊨, it suffices if

SJΣKF′ (𝜍) EJTiK𝜍F′ (ei [𝛾])
𝑖<𝑛

EJXK𝜍F′ (const x = malloc (n + 1); ∗x = 1; ∗(x + 1 + i) = ei [𝛾];
𝑖<𝑛

x)
By wp-bop, wp-malloc, and wp-let interspersed with wp-bind and ▷ -R, it suffices if for any
ℓ ∈ LocN+ (H4)

SJΣKF′ (𝜍) EJTiK𝜍F′ (ei [𝛾])
𝑖<𝑛

ℓ + 𝑖 ↦→ h
𝑖<𝑛+1

size (ℓ, 𝑛 + 1)
EJXK𝜍F′ (∗ℓ = 1; ∗(ℓ + 1 + i) = ei [𝛾];

𝑖<𝑛

ℓ)
By wp-stoRe and ▷ -R, it suffices if

SJΣKF′ (𝜍) EJTiK𝜍F (ei [𝛾])
𝑖<𝑛

ℓ ↦→ 1 ℓ + 1 + 𝑖 ↦→ h
𝑖<𝑛

size (ℓ, 𝑛 + 1)
EJXK𝜍F (∗(ℓ + 1 + i) = ei [𝛾];

𝑖<𝑛

ℓ)
By 𝑛 applications of lR-bind, wp-bop, and wp-stoRe, interspersed with wp-bind and ▷ -R, it
suffices if for any wi

𝑖<𝑛

SJΣKF′ (𝜍) VJTiK𝜍F (wi)
𝑖<𝑛

ℓ ↦→ 1 ℓ + 1 + 𝑖 ↦→ wi
𝑖<𝑛

size (ℓ, 𝑛 + 1)
EJXK𝜍F (ℓ)

By wp-shaRe, lR-val,VJ−K with H4, RJ−K, @ -! , and @ -mono, it suffices if

SJΣKF′ (𝜍) VJTiK𝜍F (wi)
𝑖<𝑛

ℓ + 1 + 𝑖 ↦→ wi
𝑖<𝑛

size (ℓ, 𝑛 + 1)
𝜍 (X).obj(ℓ + 1)

Note that by H2 and unfolding SJ−K, there is some 𝛿 = 𝜍 (X) (H5) . Since the mode of X is rigid, by
by H5, we have we have 𝛿.kind = struct(H6) , 𝑛 = |dom(𝛿.sel) | (H7) , ∀ 𝑖 < 𝑛. 𝛿 .sel(si).off = 𝑖 (H8) , and
it suffices if

!∀ 𝑖 < 𝑛, w. 𝛿 .sel(si).semty(w) ≡ ▷VJTiK𝜍F (w)
VJTiK𝜍F (wi)

𝑖<𝑛

ℓ + 1 + 𝑖 ↦→ wi
𝑖<𝑛

size (ℓ, 𝑛 + 1)
𝜍 (X).obj(ℓ + 1)

If 𝑛 = 0, we are done with ! -dRop. Otherwise, unfolding 𝛿.obj with H6 and H5, it suffices if
!∀ 𝑖 < 𝑛, w. 𝛿 .sel(si).semty(w) ≡ ▷VJTiK𝜍F (w)

VJTiK𝜍F (wi)
𝑖<𝑛

ℓ + 1 + 𝑖 ↦→ wi
𝑖<𝑛

size (ℓ, 𝑛 + 1)

size (ℓ, 1 + |dom(𝛿.sel) |) ∃ ws . ℓ + 1 + 𝛿.sel(𝑠).off ↦→ ws ★ 𝛿.sel(𝑠).semty(ws)
𝑠∈dom(𝛿.sel)

which follows from H7, H8, ! -unR, ▷ -R, and ≡-l. □

Lemma F.118 (comp-E-struct-compat).
(comp-E-struct-compat)

Σ ∋ m struct X {si : Ti
𝑖<𝑛} Σ; Γ ⊨F e : X

Σ; Γ ⊨F const x = e; const xj = ∗
(
x + sel sj

Σ.X + 1
)
; dup Tj

(
xj

)
; drop Σ

X (x) ; xj : Tj

76 Andrew Wagner, Zachary Eisbach, and Amal Ahmed

PRoof. Unfold ⊨ and consider F′ ⊇ F, 𝜍, 𝛾 (H1) . Assume the premises Σ ∋ m struct X {si : T𝑖<𝑛}
(H2)

,
and Σ; Γ ⊨F e : X(H3) We must show

SJΣKF′ (𝜍) CJΓK𝜍F′ (𝛾)
EJTjK𝜍F′ (const x = e[𝛾]; const xj = ∗

(
x + sel sj

Σ.X + 1
)
; dup Tj

(
xj

)
; drop Σ

X (x) ; xj

)
By SignatuRe Substitution UnRestRicted and ! -unR, then H3 with H1, it suffices if

SJΣKF′ (𝜍) EJXK𝜍F′ (e[𝛾])
EJTjK𝜍F′ (const x = e[𝛾]; const xj = ∗

(
x + sel sj

Σ.X + 1
)
; dup Tj

(
xj

)
; drop Σ

X (x) ; xj

)
By lR-bind,VJ−K, RJ−K, and OJ−K, it suffices if for any ℓ ∈ LocN+ (H4)

SJΣKF′ (𝜍) @ℓ 𝜍 (X).obj(ℓ + 1)

EJTjK𝜍F′ (const x = ℓ ; const xj = ∗
(
x + sel sj

Σ.X + 1
)
; dup Tj

(
xj

)
; drop Σ

X (x) ; xj

)
By wp-let and ▷ -R, it suffices if

SJΣKF′ (𝜍) @ℓ 𝜍 (X).obj(ℓ + 1)

EJTjK𝜍F′ (const xj = ∗
(
ℓ + sel sj

Σ.X + 1
)
; dup Tj

(
xj

)
; drop Σ

X (ℓ) ; xj

)
Note that by H2, ! -unR and unfolding SJ−K, there is some 𝛿 = 𝜍 (X) (H5) . Since the mode of X is
indeterminate, by H5, we have we have 𝛿.kind = struct(H6) and it suffices if

SJΣKF′ (𝜍) !∀ 𝑖 < 𝑛, w. 𝛿 .sel(si).semty(w) ≡ ▷VJTiK𝜍F (w) @ℓ 𝛿.obj(ℓ + 1)

EJTjK𝜍F′ (const xj = ∗
(
ℓ + sel sj

Σ.X + 1
)
; dup Tj

(
xj

)
; drop Σ

X (ℓ) ; xj

)
Then by 𝛿.obj with H6 and H5, and also ★-∃ and@ -∃ , it suffices if for any ws

s∈dom(𝛿.sel)

SJΣKF′ (𝜍) !∀ 𝑖 < 𝑛, w. 𝛿 .sel(si).semty(w) ≡ ▷VJTiK𝜍F (w)
@ℓ

(
size (ℓ, 1 + |dom(𝛿.sel) |) ★★s∈dom(𝛿.sel)

ℓ + 1 + 𝛿.sel(s).off ↦→ ws ★ 𝛿.sel(s).semty(ws)
)

EJTjK𝜍F′ (const xj = ∗
(
ℓ + sel sj

Σ.X + 1
)
; dup Tj

(
xj

)
; drop Σ

X (ℓ) ; xj

)
By ! -L and ∀ -L, it suffices if

SJΣKF′ (𝜍) 𝛿.sel(sj).semty(w) ≡ ▷VJTjK𝜍F (wsj)
@ℓ

(
size (ℓ, 1 + |dom(𝛿.sel) |) ★★s∈dom(𝛿.sel)

ℓ + 1 + 𝛿.sel(s).off ↦→ ws ★ 𝛿.sel(s).semty(ws)
)

EJTjK𝜍F′ (const xj = ∗
(
ℓ + sel sj

Σ.X + 1
)
; dup Tj

(
xj

)
; drop Σ

X (ℓ) ; xj

)
By ! -≡, ! -unR, @ -! , and ≡-l to use ≡ to rewrite under the @ℓ , then ▷ -R, ▷ -★, and @ -▷ , it
suffices if

SJΣKF′ (𝜍) 𝛿.sel(sj).semty(w) ≡ ▷VJTjK𝜍F (wsj)

▷@ℓ

©«
size (ℓ, 1 + |dom(𝛿.sel) |)

★ VJTjK𝜍F′ (wsj)
★ ℓ + 1 + 𝛿.sel(sj).off ↦→ wsj

★ ★s∈dom(𝛿.sel)\sj
ℓ + 1 + 𝛿.sel(s).off ↦→ ws ★ 𝛿.sel(s) .semty(ws)

ª®®®®¬
EJTjK𝜍F′ (const xj = ∗

(
ℓ + sel sj

Σ.X + 1
)
; dup Tj

(
xj

)
; drop Σ

X (ℓ) ; xj

)

Realistic Realizability: Specifying ABIs You Can Count On 77

By two uses of wp-bop and also sel with ! -unR, all interspersed with wp-bind, ▷ -R, and ▷ -mono
(to strip the ▷), it suffices if

SJΣKF′ (𝜍) 𝛿.sel(sj).semty(w) ≡ ▷VJTjK𝜍F (wsj)

@ℓ

©«
size (ℓ, 1 + |dom(𝛿.sel) |)

★ VJTjK𝜍F′ (wsj)
★ ℓ + 1 + 𝛿.sel(sj).off ↦→ wsj

★ ★s∈dom(𝛿.sel)\sj
ℓ + 1 + 𝛿.sel(s).off ↦→ ws ★ 𝛿.sel(s).semty(ws)

ª®®®®¬
EJTjK𝜍F′ (const xj = ∗(ℓ + 𝛿.sel(sj).off + 1); dup Tj

(
xj

)
; drop Σ

X (ℓ) ; xj

)
By wp-let and wp-load with⋄ -@ and⋄ -dRop, interspersed with wp-bind and ▷ -R, it suffices
if

SJΣKF′ (𝜍) 𝛿.sel(sj).semty(w) ≡ ▷VJTjK𝜍F (wsj)

@ℓ

©«
size (ℓ, 1 + |dom(𝛿.sel) |)

★ VJTjK𝜍F′ (wsj)
★ ℓ + 1 + 𝛿.sel(sj).off ↦→ wsj

★ ★s∈dom(𝛿.sel)\sj
ℓ + 1 + 𝛿.sel(s).off ↦→ ws ★ 𝛿.sel(s).semty(ws)

ª®®®®¬
EJTjK𝜍F′ (dup Tj

(
wsj

)
; drop Σ

X (ℓ) ; wsj

)
By wp-seq and dup with⋄ -@ and⋄ -dRop, followed by wp-Ramify and ▷ -R, it suffices if

SJΣKF′ (𝜍) 𝛿.sel(sj).semty(w) ≡ ▷VJTjK𝜍F (wsj)

VJTjK𝜍F′ (wsj) @ℓ

©«
size (ℓ, 1 + |dom(𝛿.sel) |)

★ VJTjK𝜍F′ (wsj)
★ ℓ + 1 + 𝛿.sel(sj).off ↦→ wsj

★ ★s∈dom(𝛿.sel)\sj
ℓ + 1 + 𝛿.sel(s).off ↦→ ws ★ 𝛿.sel(s).semty(ws)

ª®®®®¬
EJTjK𝜍F′ (drop Σ

X (ℓ) ; wsj

)
By ! -≡, @ -! , and ≡-l, along with @ -mono and ▷ -R, we can once again use ≡ to rewrite under
the @ℓ . It therefore suffices if

SJΣKF′ (𝜍) VJTjK𝜍F′ (wsj)
@ℓ

(
size (ℓ, 1 + |dom(𝛿.sel) |) ★★s∈dom(𝛿.sel)

ℓ + 1 + 𝛿.sel(s).off ↦→ ws ★ 𝛿.sel(s).semty(ws)
)

EJTjK𝜍F′ (drop Σ
X (ℓ) ; wsj

)
By@ -∃ and★-∃ , and foldingVJ−K (using H4),RJ−K, OJ−K, and 𝛿.objwith H5 and H6, it suffices
if

SJΣKF′ (𝜍) VJTjK𝜍F′ (wsj) VJXK𝜍F′ (ℓ)
EJTjK𝜍F′ (drop Σ

X (ℓ) ; wsj

)
By wp-seq and dRop, followed by wp-Ramify and ▷ -R, it suffices if

VJTjK𝜍F′ (wsj)

EJTjK𝜍F′ (wsj

)
which follows by lR-val. □

78 Andrew Wagner, Zachary Eisbach, and Amal Ahmed

Lemma F.119 (comp-I-enum-compat).
(comp-I-enum-compat)

Σ ∋ m enum X {si : Ti
𝑖<𝑛} Σ; Γ ⊨F ej : Tj

Σ; Γ ⊨F const x = malloc (3); ∗x = 1; ∗(x + 1) = sel sj
Σ.X; ∗(x + 2) = ej; x : X

PRoof. Unfold ⊨ and consider F′ ⊇ F, 𝜍, 𝛾 (H1) . Assume the premises Σ ∋ m struct X {si : T𝑖<𝑛}
(H2)

and Σ; Γ ⊨F ej : Tj
(H3) . We must show

SJΣKF′ (𝜍) CJΓK𝜍F′ (𝛾)
EJXK𝜍F′ (const x = malloc (3); ∗x = 1; ∗(x + 1) = sel sj

Σ.X; ∗(x + 2) = ej [𝛾]; x
)

By SignatuRe Substitution UnRestRicted and ! -unR, then H3 with H1, it suffices if
SJΣKF′ (𝜍) EJTjK𝜍F′ (ej [𝛾])

EJXK𝜍F′ (const x = malloc (3); ∗x = 1; ∗(x + 1) = sel sj
Σ.X; ∗(x + 2) = ej [𝛾]; x

)
By wp-malloc, wp-stoRe, and wp-bop, all interspersed with wp-bind and ▷ -R, it suffices if for
any ℓ ∈ LocN+ (H4)

SJΣKF′ (𝜍) EJTjK𝜍F′ (ej [𝛾]) size (ℓ, 3) ℓ ↦→ 1 ℓ + 1 ↦→ h ℓ + 2 ↦→ h

EJXK𝜍F′ (∗(ℓ + 1) = sel sj
Σ.X; ∗(ℓ + 2) = ej [𝛾]; ℓ

)
Note that by H2, ! -unR and unfolding SJ−K, there is some 𝛿 = 𝜍 (X) (H5) . Since the mode of X is
indeterminate, by H5, we have we have 𝛿.kind = enum(H6) and it suffices if

SJΣKF′ (𝜍) !∀ 𝑖 < 𝑛, w. 𝛿 .sel(si).semty(w) ≡ ▷VJTiK𝜍F (w)
EJTjK𝜍F′ (ej [𝛾]) size (ℓ, 3) ℓ ↦→ 1 ℓ + 1 ↦→ h ℓ + 2 ↦→ h

EJXK𝜍F′ (∗(ℓ + 1) = sel sj
Σ.X; ∗(ℓ + 2) = ej [𝛾]; ℓ

)
Then by wp-bind and sel with H5, it suffices if

!∀ 𝑖 < 𝑛, w. 𝛿 .sel(si).semty(w) ≡ ▷VJTiK𝜍F (w)
EJTjK𝜍F′ (ej [𝛾]) size (ℓ, 3) ℓ ↦→ 1 ℓ + 1 ↦→ h ℓ + 2 ↦→ h

EJXK𝜍F′ (∗(ℓ + 1) = 𝛿.sel(sj).off; ∗(ℓ + 2) = ej [𝛾]; ℓ
)

By wp-stoRe and wp-bop interspersed with wp-bind and ▷ -R, it suffices if
!∀ 𝑖 < 𝑛, w. 𝛿 .sel(si).semty(w) ≡ ▷VJTiK𝜍F (w)

EJTjK𝜍F′ (ej [𝛾]) size (ℓ, 3) ℓ ↦→ 1 ℓ + 1 ↦→ 𝛿.sel(sj).off ℓ + 2 ↦→ h

EJXK𝜍F′ (∗(ℓ + 2) = ej [𝛾]; ℓ
)

By lR-bind, then ! -L and ∀ -L, it suffices if for any wj

𝛿.sel(sj).semty(w) ≡ ▷VJTjK𝜍F (wj)
VJTjK𝜍F′ (wj) size (ℓ, 3) ℓ ↦→ 1 ℓ + 1 ↦→ 𝛿.sel(sj).off ℓ + 2 ↦→ h

EJXK𝜍F′ (∗(ℓ + 2) = wj; ℓ
)

By wp-stoRe, ▷ -R, and lR-val, it suffices if
𝛿.sel(sj).semty(w) ≡ ▷VJTjK𝜍F (wj)

VJTjK𝜍F′ (wj) size (ℓ, 3) ℓ ↦→ 1 ℓ + 1 ↦→ 𝛿.sel(sj).off ℓ + 2 ↦→ wj

VJXK𝜍F′ (ℓ)

Realistic Realizability: Specifying ABIs You Can Count On 79

By wp-shaRe, VJ−K with H4, RJ−K, OJ−K, and H5, it suffices if
𝛿.sel(sj).semty(w) ≡ ▷VJTjK𝜍F (wj)

@ℓ
(
VJTjK𝜍F′ (wj) ★ size (ℓ, 3) ★ ℓ + 1 ↦→ 𝛿.sel(sj).off ★ ℓ + 2 ↦→ wj

)
@ℓ 𝜍 (X).obj(ℓ + 1)

By ! -≡,@ -! , and @ -mono with 𝛿.obj and H6, it suffices if
𝛿.sel(sj).semty(w) ≡ ▷VJTjK𝜍F (wj)

VJTjK𝜍F′ (wj) size (ℓ, 3) ℓ + 1 ↦→ 𝛿.sel(sj).off ℓ + 2 ↦→ wj

size (ℓ, 3)
∨

s∈dom(𝛿.sel)
ℓ + 1 ↦→ 𝛿.sel(s).off ★ ∃ ws . ℓ + 2 ↦→ ws ★ 𝛿.sel(s).semty(ws)

which holds by selecting sj and applying ≡-l with ▷ -R. □

Lemma F.120 (comp-E-enum-compat).
(comp-E-enum-compat)

Σ ∋ rigid enum X {si : T𝑖<𝑛} Σ; Γ1 ⊨F e : X Σ; Γ2, xi : Ti ⊨F ei : Ti
𝑖<𝑛

Γ2 ∌ xi
𝑖<𝑛

Σ; Γ1, Γ2 ⊨F

const x = e;
const y = ∗(x + 1);

if (y = i)
{
const xi = ∗(x + 2); dup Ti (xi) ; drop Σ

X (x) ; ei

}𝑖

else {havoc}

: T

PRoof. Unfold ⊨ and consider F′ ⊇ F, 𝜍, 𝛾 (H1) . Also, assume that Σ ∋ rigid enum X {si : Ti
𝑖<𝑛}

(H2)
,

Σ; Γ1 ⊨F e : X(H3) Σ; Γ2, xi : Ti ⊨F ei : T𝑖<𝑛 (H4)
. We must show

SJΣKF′ (𝜍) CJΓ1, Γ2K𝜍F′ (𝛾)
EJTK𝜍F′ ©«

const x = e[𝛾];
const y = ∗(x + 1);

if (y = i)
{
const xi = ∗(x + 2); dup Ti (xi) ; drop Σ

X (x) ; ei [𝛾 \ xi]
}𝑖

else {havoc}

ª®®®®¬
By C-split and 𝑛 applications of ∧-R with C-cons (with ! -unR as needed), it suffices if

SJΣKF′ (𝜍) CJΓ1K𝜍F′ (𝛾) ∧
𝑖<𝑛

∀ wi. VJTiK𝜍F′ (wi) —★
(
SJΣKF′ (𝜍) ★ CJΓ2, xi : TiK𝜍F′ (𝛾 [wi/xi])

)
EJTK𝜍F′ ©«

const x = e[𝛾];
const y = ∗(x + 1);

if (y = i)
{
const xi = ∗(x + 2); dup Ti (xi) ; drop Σ

X (x) ; ei [𝛾 \ xi]
}𝑖

else {havoc}

ª®®®®¬
Simplify with the observation that (𝛾\xi) [wi/xi] = 𝛾 [wi/xi], since wi will take priority as the value
for xi in the parallel substitution, regardless of whether xi is in 𝛾 . By SignatuRe Substitution
UnRestRicted and ! -unR, then H3 with H1 and ⊨, it suffices if

SJΣKF′ (𝜍) EJXK𝜍F′ (e[𝛾]) ∧
𝑖<𝑛

∀ wi. VJTiK𝜍F′ (wi) —★ EJTiK𝜍F′ (ei [𝛾 \ xi] [wi/xi])

EJTK𝜍F′ ©«
const x = e[𝛾];
const y = ∗(x + 1);

if (y = i)
{
const xi = ∗(x + 2); dup Ti (xi) ; drop Σ

X (x) ; ei [𝛾 \ xi]
}𝑖

else {havoc}

ª®®®®¬

80 Andrew Wagner, Zachary Eisbach, and Amal Ahmed

By lR-bind,VJ−K, RJ−K, and OJ−K, it suffices if for any ℓ ∈ LocN+ (H5)

SJΣKF′ (𝜍) @ℓ 𝜍 (X).obj(ℓ + 1)
∧

𝑖<𝑛
∀ wi . VJTiK𝜍F′ (wi) —★ EJTiK𝜍F′ (ei [𝛾 \ xi] [wi/xi])

EJXK𝜍F′ ©«
const x = ℓ ;
const y = ∗(x + 1);

if (y = i)
{
const xi = ∗(x + 2); dup Ti (xi) ; drop Σ

X (x) ; ei [𝛾 \ xi]
}𝑖<𝑛

else {havoc}

ª®®®®¬
By wp-let and wp-bop interspersed with wp-bind and ▷ -R, it suffices if

SJΣKF′ (𝜍) @ℓ 𝜍 (X).obj(ℓ + 1)
∧

𝑖<𝑛
∀ wi . VJTiK𝜍F′ (wi) —★ EJTiK𝜍F′ (ei [𝛾 \ xi] [wi/xi])

EJXK𝜍F′ ©«
const y = ∗(ℓ + 1);

if (y = i)
{
const xi = ∗(ℓ + 2); dup Ti (xi) ; drop Σ

X (ℓ) ; ei [𝛾 \ xi]
}𝑖<𝑛

else {havoc}

ª®®®¬
Note that by H2, ! -unR and unfolding SJ−K, there is some 𝛿 = 𝜍 (X) (H6) . Since the mode of X is
rigid, by H6, we havewe have 𝛿.kind = enum(H7) ,𝑛 = |dom(𝛿.sel) | (H8) ,∀ 𝑖 < 𝑛. 𝛿 .sel(si).off = 𝑖 (H9) ,
and it suffices if

SJΣKF′ (𝜍) !∀ 𝑖 < 𝑛, w. 𝛿 .sel(si).semty(w) ≡ ▷VJTiK𝜍F (w)
SJΣKF′ (𝜍) @ℓ 𝜍 (X).obj(ℓ + 1)

∧
𝑖<𝑛

∀ wi . VJTiK𝜍F′ (wi) —★ EJTiK𝜍F′ (ei [𝛾 \ xi] [wi/xi])

EJXK𝜍F′ ©«
const y = ∗(ℓ + 1);

if (y = i)
{
const xi = ∗(ℓ + 2); dup Ti (xi) ; drop Σ

X (ℓ) ; ei [𝛾 \ xi]
}𝑖<𝑛

else {havoc}

ª®®®¬
Then by 𝛿.obj with H7 and H6, and simplifying with ! -size (−, −) and@ -! , it suffices if

SJΣKF′ (𝜍) !∀ 𝑖 < 𝑛, w. 𝛿 .sel(si).semty(w) ≡ ▷VJTiK𝜍F (w)
@ℓ

(∨
s∈dom(𝛿.sel)

ℓ + 1 ↦→ 𝛿.sel(s).off ★ ∃ ws . ℓ + 2 ↦→ ws ★ 𝛿.sel(s).semty(ws)
)

size (ℓ, 3)
∧

𝑖<𝑛
∀ wi. VJTiK𝜍F′ (wi) —★ EJTiK𝜍F′ (ei [𝛾 \ xi] [wi/xi])

EJXK𝜍F′ ©«
const y = ∗(ℓ + 1);

if (y = i)
{
const xi = ∗(ℓ + 2); dup Ti (xi) ; drop Σ

X (ℓ) ; ei [𝛾 \ xi]
}𝑖<𝑛

else {havoc}

ª®®®¬
By@ -∨, ∨-L, and H8, we have 𝑛 > 0(H10) cases; if 𝑛 = 0, then the disjunct under the jump is false,
and we apply@ -⊥ (which is the expected nullary generalization of@ -∨). Simplifying with ! -unR
! -L, ∀ -L, ! -≡, @ -! , and ≡-l to use ≡ to rewrite under the @ℓ , then applying @ -∃ , it suffices if
for any 𝑗 < 𝑛 and wj

SJΣKF′ (𝜍)
!∀ 𝑖 < 𝑛, w. 𝛿 .sel(si).semty(w) ≡ ▷VJTiK𝜍F (w) @ℓ

(
ℓ + 1 ↦→ j ★ ℓ + 2 ↦→ wj ★ ▷VJTjK𝜍F′ (wj)

)
size (ℓ, 3) VJTjK𝜍F′ (wj) —★ EJTjK𝜍F′ (ej [𝛾 \ xj] [wj/xj])

EJXK𝜍F′ ©«
const y = ∗(ℓ + 1);

if (y = i)
{
const xi = ∗(ℓ + 2); dup Ti (xi) ; drop Σ

X (ℓ) ; ei [𝛾 \ xi]
}𝑖<𝑛

else {havoc}

ª®®®¬

Realistic Realizability: Specifying ABIs You Can Count On 81

By wp-load—with⋄ -@ and⋄ -dRop—and wp-let, interspersed with wp-bind, it suffices if
SJΣKF′ (𝜍)

!∀ 𝑖 < 𝑛, w. 𝛿 .sel(si).semty(w) ≡ ▷VJTiK𝜍F (w) @ℓ
(
ℓ + 1 ↦→ j ★ ℓ + 2 ↦→ wj ★ ▷VJTjK𝜍F′ (wj)

)
size (ℓ, 3) VJTjK𝜍F′ (wj) —★ EJTjK𝜍F′ (ej [𝛾 \ xj] [wj/xj])

EJXK𝜍F′ (if (j = i)
{
const xi = ∗(ℓ + 2); dup Ti (xi) ; drop Σ

X (ℓ) ; ei [𝛾 \ xi]
}𝑖<𝑛

else {havoc}
)

By @ -mono, ▷ -R, ▷ -★, and @ -▷ , it suffices if
SJΣKF′ (𝜍)

!∀ 𝑖 < 𝑛, w. 𝛿 .sel(si).semty(w) ≡ ▷VJTiK𝜍F (w) ▷@ℓ
(
ℓ + 1 ↦→ j ★ ℓ + 2 ↦→ wj ★VJTjK𝜍F′ (wj)

)
size (ℓ, 3) VJTjK𝜍F′ (wj) —★ EJTjK𝜍F′ (ej [𝛾 \ xj] [wj/xj])

EJXK𝜍F′ (if (j = i)
{
const xi = ∗(ℓ + 2); dup Ti (xi) ; drop Σ

X (ℓ) ; ei [𝛾 \ xi]
}𝑖<𝑛

else {havoc}
)

By max(𝑗 − 1, 0) applications of wp-bop and wp-if-f, and then one more application of wp-bop,
interspersed with wp-bind, ▷ -R, and ▷ -mono (to strip the ▷ , recalling H10), it suffices if

SJΣKF′ (𝜍)
!∀ 𝑖 < 𝑛, w. 𝛿 .sel(si).semty(w) ≡ ▷VJTiK𝜍F (w) @ℓ

(
ℓ + 1 ↦→ j ★ ℓ + 2 ↦→ wj ★VJTjK𝜍F′ (wj)

)
size (ℓ, 3) VJTjK𝜍F′ (wj) —★ EJTjK𝜍F′ (ej [𝛾 \ xj] [wj/xj])

EJXK𝜍F′ (if (1)
{
const xj = ∗(ℓ + 2); dup Tj

(
xj

)
; drop Σ

X (ℓ) ; ej [𝛾 \ xj]
}

else {· · ·}𝑛− 𝑗

else {havoc}
)

By wp-if-t, and wp-bop, all interspersed with wp-bind, and ▷ -R, it suffices if
SJΣKF′ (𝜍)

!∀ 𝑖 < 𝑛, w. 𝛿 .sel(si).semty(w) ≡ ▷VJTiK𝜍F (w) @ℓ
(
ℓ + 1 ↦→ j ★ ℓ + 2 ↦→ wj ★VJTjK𝜍F′ (wj)

)
size (ℓ, 3) VJTjK𝜍F′ (wj) —★ EJTjK𝜍F′ (ej [𝛾 \ xj] [wj/xj])

EJXK𝜍F′ (const xj = ∗(ℓ + 2); dup Tj

(
xj

)
; drop Σ

X (ℓ) ; ej [𝛾 \ xj]
)

By wp-load—with⋄ -@ and⋄ -dRop—and wp-let, interspersed with wp-bind, ▷ -R, and —★-R,
it suffices if

SJΣKF′ (𝜍)
!∀ 𝑖 < 𝑛, w. 𝛿 .sel(si).semty(w) ≡ ▷VJTiK𝜍F (w) @ℓ

(
ℓ + 1 ↦→ j ★ ℓ + 2 ↦→ wj ★VJTjK𝜍F′ (wj)

)
size (ℓ, 3) VJTjK𝜍F′ (wj) —★ EJTjK𝜍F′ (ej [𝛾 \ xj] [wj/xj])

EJXK𝜍F′ (dup Tj

(
wj

)
; drop Σ

X (ℓ) ; ej𝛾 [wj/xj]
)

By wp-seq, dup with⋄ -R, wp-Ramify, and ▷ -R, it suffices if
SJΣKF′ (𝜍)

!∀ 𝑖 < 𝑛, w. 𝛿 .sel(si).semty(w) ≡ ▷VJTiK𝜍F (w) @ℓ
(
ℓ + 1 ↦→ j ★ ℓ + 2 ↦→ wj ★VJTjK𝜍F′ (wj)

)
size (ℓ, 3) VJTjK𝜍F (wj) VJTjK𝜍F′ (wj) —★ EJTjK𝜍F′ (ej [𝛾 \ xj] [wj/xj])

EJXK𝜍F′ (drop Σ
X (ℓ) ; ej [𝛾 \ xj] [wj/xj]

)
Refolding withVJ−K (using H5), RJ−K, 𝛿.obj, H6, and H7 (using ≡-l like above as appropriate), it
suffices if

SJΣKF′ (𝜍) VJXK𝜍F′ (ℓ) EJTjK𝜍F′ (ej [𝛾 \ xj] [wj/xj])

EJXK𝜍F′ (drop Σ
X (ℓ) ; ej [𝛾 \ xj] [wj/xj]

)
which follows by wp-seq, dRop, wp-Ramify, and ▷ -R. □

82 Andrew Wagner, Zachary Eisbach, and Amal Ahmed

F.5 Library Evolution
Definition F.121 (Supported Evolution). Σ supports evolution to Σ′ if for all Γ, e, F,T,

Σ; Γ ⊨F e : T ⇒ Σ′; Γ ⊨F e : T

Lemma F.122 (PReseRved SignatuRe Evolution). Σ supports evolution to Σ′ if for all F, 𝜍 ,

SJΣ′KF (𝜍) ⊨ SJΣKF(𝜍)

PRoof. Assume the premise, that SJΣ′KF (𝜍) ⊨ SJΣKF (𝜍)
(H1) . Unfolding Supported Evolution

and ⊨, it suffices if for all Γ, e, F,T,
∀F′ ⊇ F, 𝜍, 𝛾 . SJΣKF′ (𝜍) ★ CJΓK𝜍F′ (𝛾) ⊨ EJTK𝜍F′ (e[𝛾])

⇒ ∀F′ ⊇ F, 𝜍, 𝛾 . SJΣ′KF′ (𝜍) ★ CJΓK𝜍F′ (𝛾) ⊨ EJTK𝜍F′ (e[𝛾])
Then assume

• ∀F′ ⊇ F, 𝜍, 𝛾 . SJΣKF′ (𝜍) ★ CJΓK𝜍F′ (𝛾) ⊨ EJTK𝜍F′ (e[𝛾]) (H2)
and take arbitrary F′ ⊇ F(H3) , 𝜍 (H4) , and 𝛾 (H5) . It suffices if

SJΣ′KF′ (𝜍) ★ CJΓK𝜍F′ (𝛾) ⊨ EJTK𝜍F′ (e[𝛾]))
which, after applying H1, follows from instantiating H2 with H3, H4, and H5. □

Lemma F.123 (SignatuRe PReseRvation). If {sj : Tj | 𝑗 < 𝑚} ⊇ {si : Ti | 𝑖 < 𝑛}, then

S
r
Σ,m k X {sj : Tj

𝑗<𝑚}
z

F
(𝜍) ⊨ S

r
Σ, flex k X {si : Ti

𝑖<𝑛}
z

F
(𝜍)

PRoof. Assume the premise {sj : Tj | 𝑗 < 𝑚} ⊇ {si : Ti | 𝑖 < 𝑛} (H1) . If there are no 𝑗 < 𝑚 then
there must not be any 𝑖 < 𝑛 and the proof is trivial. Otherwise, unfolding S and simplifying and
letting 𝛿 = 𝜍 (X), it suffices to show

⌜dom(𝜍) ⊇ dom(Σ,m k X {sj : Tj
𝑗<𝑚})⌝

(H8)
∀ m′ k Y {· · ·} ∈ Σ. . . . (H7) ⌜𝛿.kind = k⌝ (H6)

⌜dom(𝛿.sel) ⊇ {sj | 𝑗 < 𝑚}⌝ (H5) ∀ 𝑗 < 𝑚. !wpF

(〈
selsj

X
〉

F ()
)
{w. ⌜w = 𝛿.sel(sj).off⌝}

(H4)

∀ 𝑗 < 𝑚, w. 𝛿 .sel(sj).semty(w) ≡ ▷VJTjK𝜍F (w) (H3)
∀ ℓ . {ℓ ↦→ 0 ★ 𝛿.obj(ℓ + 1)} ⟨destrX⟩F (ℓ) {emp}F

(H2)

⌜dom(𝜍) ⊇ dom(Σ, flex k X {si : Ti
𝑖<𝑛})⌝

(G1)
∀ m′ k Y {· · ·} ∈ Σ. . . . (G2) ⌜𝛿.kind = k⌝ (G3)

⌜dom(𝛿.sel) ⊇ {si | 𝑖 < 𝑛}⌝ (G4) ∀ 𝑖 < 𝑛. !wpF

(〈
selsi

X
〉

F ()
)
{w. ⌜w = 𝛿.sel(si).off⌝}

(G5)

∀ 𝑖 < 𝑛, w. 𝛿 .sel(si).semty(w) ≡ ▷VJTiK𝜍F (w) (G6)
∀ ℓ . {ℓ ↦→ 0 ★ 𝛿.obj(ℓ + 1)} ⟨destrX⟩F (ℓ) {emp}F

(G7)

We can discharge each proof obligation separately, using★-mono. G1 follows from H8, which also
ensures that 𝛿 is well defined. G2 follows from H7. G3 follows from H6. G4 follows from H5 and
H1. G5 follows from H4 and H1. G6 follows from H3 and H1. G7 follows from H2. □

Lemma F.124 (CRoss-VeRsion LinKing). If Σ supports evolution to Σ′, and both Σ′; Γ1 ⊨F1 e1 : T1,
and Σ; Γ2, x : T1 ⊨F2 e2 : T2, (with x ∉ Γ2), then Σ′; Γ1, Γ2 ⊨F1,F2 const x = e1; e2 : T2.

PRoof. By Supported Evolution, Σ; Γ2, x : T1 ⊨F2 e2 : T2 implies Σ′; Γ2, x : T1 ⊨F2 e2 : T2. Using
this, the result follows from comp-let-compat. □

Lemma F.125 (Evolution Adeacy). If Σ supports evolution to Σ′ and Σ′ ⊣ F, then Σ;∅ ⊢ e :
Z ⇝ e ⊣ F implies okF (e).

Realistic Realizability: Specifying ABIs You Can Count On 83

PRoof. Suppose we have Σ′ ⊣ F(H1) and, applying CompileR Compliance, Σ;∅ ⊨F e : Z. By the
definition of Supported Evolution, we also have Σ′;∅ ⊨F e : Z. Unfolding ⊨F and CJ−K as in the
proof of CompileR Adeacy, we have

∀F′ ⊇ F, 𝜍 . SJΣ′KF′ (𝜍) ⊨ EJZK𝜍F′ (e)
By Canonical SignatuRe Satisfiable with H1, we have emp ⊨ SJΣ′KFL Σ′ M. okF (e) follows

after instantiating this with F ⊇ F and L Σ′ M, then applying lR-adeacy. □

	Contents
	List of Figures
	A Source
	A.1 Syntax
	A.2 Statics

	B Target
	B.1 Syntax
	B.2 Dynamics

	C Compiler
	D Logic
	E ABI
	F Proofs
	F.1 Domains
	F.2 Logic
	F.3 Properties of the ABI
	F.4 Compiler Compliance
	F.5 Library Evolution

