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“The standard is haunted … by that Three Letter 
Demon. … a contract was forged in blood.”
– JeanHeyd Meneide, WG14 C/C++ Compatibility Chair
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🤷 Who Cares?
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★       Swift: ABI Stability Manifesto

★       Rust: crABI

★       C++: WG21 ARG

★       WASM: Component Model

★ 🫵   You! 

in 
^ 



All the Compilers Together
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Compiler 1
● gcc
● gcc 9
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Compiler 2
● clang
● gcc 10
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❓

All the Languages Together

S1 S2
✅

●Multi-Lang. Boundaries [MF07]
●Linking Types [PWA23]
●Probably a C FFI 🙃

4



❓

All the Languages Together

S1 S2
✅
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Compile Compile
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All the Libraries Together
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Scli

Slib
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Tlib

Tcli

❓

Slib
2 Tlib

2

Compile

Update
✅

❓

“DLL Hell” 😵💫
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● Design decisions, tradeoffs, uncharted territory
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Can we provide a semantic foundation?
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What Is an ABI, Formally?
“This source interface …”

“… describes target programs like this”

This Type τ 

7

Denotes These Programs
⟦τ⟧ = { T | … }

T is ABI compliant with τ if

T ∈ ⟦τ⟧

Semantic Typing via Realizability



Is this a good spec?
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Is this a good spec?

1. Formalization: Can the spec capture 

all the pertinent details?

2. Application: Can the spec be used 

in all the relevant scenarios?
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T is ABI compliant with τ if

T ∈ ⟦τ⟧



Case Study: Reference Counting

● PCF-ish Source

○ Records, variants, higher-order recursive functions

● C-ish Target 

○ Block-based memory, pointer arithmetic

● Reference Counting ABI

○ All values are boxed and reference-counted

○ Separation logic specification
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Formalization: Semantic Typing via Realizability
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Formalization: Reference Layout

11

ℓ ℓ + 1 …

c

Ref. Count

≈

Object Data

Also: 
Unboxed data 

via pointer 
tagging
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Formalization: Ownership + Sharing
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Formalization: Ownership + Sharing
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Formalization: Ownership + Sharing
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Formalization: Compound Layout

15

ℓ1 …ℓ ℓ + 1 ℓ2 …≈

Also: 
Records and 

variants
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Formalization: Calling Convention
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Pointer to function

Calling convention:
Caller retain

Callee retain

vs.

Also:  
Closures
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Application: Compiler Compliance
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S1

T1

S2
✅

❓ T2

⇝ is an compliant compiler if

S : τ  and  S ⇝ T  implies  T ∈ ⟦τ⟧Compliant

✅
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✅

Compliant

FFI

Also:  
ABI 

migration
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RigidFlexible

CSwift ?



Next Steps
★ Wrapping up case study

✦ Variations on design

★ Idiosyncrasies of Swift ABI

✦ Resilient type layouts, reabstraction (polymorphism)

★ Rust ABI over Wasm

✦ Component Model (prev. Interface Types) building blocks
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Takeaways Let’s Chat!
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Email: ahwagner@ccs.neu.edu
Web: andrewwagner.io

Application

Formalization
T ∈ ⟦τ⟧


