
All the Binaries Together
A Semantic Approach to ABIs

Andrew Wagner, Amal Ahmed  
SILC (Secure Interoperability, Languages, and Compilers)

All the Binaries Together
A Semantic Approach to ABIs

Andrew Wagner, Amal Ahmed  
SILC (Secure Interoperability, Languages, and Compilers)

“The standard is haunted … by that Three Letter
Demon. … a contract was forged in blood.”
– JeanHeyd Meneide, WG14 C/C++ Compatibility Chair

🔮 What Is an ABI?

2

🔮 What Is an ABI?
● Data layouts
● Calling conventions
● Name mangling
+ Safety invariants
+ Ownership

…

2

in
^

🔮 What Is an ABI?
● Data layouts
● Calling conventions
● Name mangling
+ Safety invariants
+ Ownership

…

🤷 Who Cares?

2

★ Swift: ABI Stability Manifesto

★ Rust: crABI

★ C++: WG21 ARG

★ WASM: Component Model

★ 🫵 You!

in
^

All the Compilers Together

3

S1 S2
✅

Compiler 1
● gcc
● gcc 9

All the Compilers Together

3

S1

T1

S2
✅

❓ T2

Compiler 2
● clang
● gcc 10

❓

All the Languages Together

S1 S2

4

❓

All the Languages Together

S1 S2
✅

●Multi-Lang. Boundaries [MF07]
●Linking Types [PWA23]
●Probably a C FFI 🙃

4

❓

All the Languages Together

S1 S2
✅

T1 ❓ T2

Compile Compile

4

All the Libraries Together

5

Scli

Slib
✅

Tlib

Tcli

Compile

✅

1 1

All the Libraries Together

5

Scli

Slib
✅

Tlib

Tcli

❓

Slib
2

Compile

Update
✅

1 1

All the Libraries Together

5

Scli

Slib
✅

Tlib

Tcli

❓

Slib
2 Tlib

2

Compile

Update
✅

❓

“DLL Hell” 😵💫

1 1

Towards a Formal ABI
● Languages are already grappling with these problems

● Growing dissatisfaction with status quo

● Demand for richer ABIs

● Design decisions, tradeoffs, uncharted territory

6

Towards a Formal ABI
● Languages are already grappling with these problems

● Growing dissatisfaction with status quo

● Demand for richer ABIs

● Design decisions, tradeoffs, uncharted territory

6

Can we provide a semantic foundation?

S

T

What Is an ABI, Formally?
“This source interface …”

“… describes target programs like this”

7

S

T

What Is an ABI, Formally?
“This source interface …”

“… describes target programs like this”

This Type τ

7

Denotes These Programs
⟦τ⟧ = { T | … } Semantic Typing via Realizability

S

T

What Is an ABI, Formally?
“This source interface …”

“… describes target programs like this”

This Type τ

7

Denotes These Programs
⟦τ⟧ = { T | … }

T is ABI compliant with τ if

T ∈ ⟦τ⟧

Semantic Typing via Realizability

Is this a good spec?

8

T is ABI compliant with τ if

T ∈ ⟦τ⟧

Is this a good spec?

1. Formalization: Can the spec capture

all the pertinent details?

2. Application: Can the spec be used

in all the relevant scenarios?

8

T is ABI compliant with τ if

T ∈ ⟦τ⟧

Case Study: Reference Counting

● PCF-ish Source

○ Records, variants, higher-order recursive functions

● C-ish Target

○ Block-based memory, pointer arithmetic

● Reference Counting ABI

○ All values are boxed and reference-counted

○ Separation logic specification

9

Formalization: Semantic Typing via Realizability

10

Formalization: Semantic Typing via Realizability

10

Formalization: Semantic Typing via Realizability

10

≈

Formalization: Semantic Typing via Realizability

10

≈

≈

Formalization: Reference Layout

11

ℓ ℓ + 1 …

c

Ref. Count

≈

Object Data

Formalization: Reference Layout

11

ℓ ℓ + 1 …

c

Ref. Count

≈

Object Data

Formalization: Reference Layout

11

ℓ ℓ + 1 …

c

Ref. Count

≈

Object Data

Also:
Unboxed data

via pointer
tagging

Formalization: Ownership + Sharing

12

ℓ ℓ + 1 …

c

Formalization: Ownership + Sharing

12

ℓ ℓ + 1 …

c≥ 1

Formalization: Ownership + Sharing

12

ℓ ℓ + 1 …

c≥ 1≥ 2≥ 3

Formalization: Ownership + Sharing

12

ℓ ℓ + 1 …

c≥ 1≥ 2≥ 3

ℓ ℓ + 1 …

Formalization: Ownership + Sharing

13

≥ 3

ℓ ℓ + 1 …

Formalization: Ownership + Sharing

13

≥ 3≥ 2≥ 1

ℓ ℓ + 1 …

Formalization: Ownership + Sharing

13

≥ 3≥ 2≥ 1> 1

ℓ ℓ + 1 …

Formalization: Ownership + Sharing

13

≥ 3≥ 2≥ 1> 11

ℓ ℓ + 1 …

Formalization: Ownership + Sharing

13

≥ 3≥ 2≥ 1> 110

Formalization: Ownership + Sharing

14

ℓ ℓ + 1 …

0

Formalization: Ownership + Sharing

14

ℓ ℓ + 1 …

01

Formalization: Ownership + Sharing

14

ℓ ℓ + 1 …

01

Formalization: Compound Layout

15

≈

Formalization: Compound Layout

15

ℓ1 …ℓ ℓ + 1 ℓ2 …≈

Formalization: Compound Layout

15

ℓ1 …ℓ ℓ + 1 ℓ2 …≈

Formalization: Compound Layout

15

ℓ1 …ℓ ℓ + 1 ℓ2 …≈

Also:
Records and

variants

Formalization: Calling Convention

16

Pointer to function

Formalization: Calling Convention

16

Pointer to function

Calling convention:
Caller retain

Formalization: Calling Convention

16

Pointer to function

Calling convention:
Caller retain

Callee retain

vs.

Formalization: Calling Convention

16

Pointer to function

Calling convention:
Caller retain

Callee retain

vs.

Also:
Closures

Application: Compiler Compliance

17

S1

T1

S2
✅

❓ T2

Application: Compiler Compliance

17

S1

T1

S2
✅

❓ T2

⇝ is an compliant compiler if

S : τ and S ⇝ T implies T ∈ ⟦τ⟧Compliant

✅

Application: FFI Safety

S1 S2✅

T1 ❓ T2

Compile Compile

18

✅

Compliant

FFI

Application: FFI Safety

S1 S2✅

T1 ❓ T2

Compile Compile

18

✅

Compliant

FFI

Also:
ABI

migration

Application: Library Compatibility

19

Scli

Slib
✅

Tlib

Tcli

Slib
2 Tlib

2

Compile

Update
✅

❓
❓

11

Application: Library Compatibility

19

Scli

Slib
✅

Tlib

Tcli

Slib
2 Tlib

2

Compile

Update
✅

❓

τ2 is an compatible update from τ1 if

T ∈ ⟦τ2⟧ implies T ∈ ⟦τ1⟧

Compatible

✅
❓

11

Application: Library Compatibility

19

Scli

Slib
✅

Tlib

Tcli

Slib
2 Tlib

2

Compile

Update
✅

❓

τ2 is an compatible update from τ1 if

T ∈ ⟦τ2⟧ implies T ∈ ⟦τ1⟧

Compatible

✅
❓

11

RigidFlexible

CSwift ?

Next Steps
★ Wrapping up case study

✦ Variations on design

★ Idiosyncrasies of Swift ABI

✦ Resilient type layouts, reabstraction (polymorphism)

★ Rust ABI over Wasm

✦ Component Model (prev. Interface Types) building blocks

20

Takeaways Let’s Chat!

21

Email: ahwagner@ccs.neu.edu
Web: andrewwagner.io

Application

Formalization
T ∈ ⟦τ⟧

