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“The standard is haunted … by that Three Letter Demon. 
… a contract was forged in blood.”

– JeanHeyd Meneide, WG14 C/C++ Compatibility Chair

😈
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The run-time contract for using a particular API (or for an 
entire library), including things like symbol names, calling conventions, and 
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Application Binary Interface (ABI)

The run-time contract for using a particular API (or for an 
entire library), including things like symbol names, calling conventions, and 
type layout information.

— Swift

foo : (Int, Int) -> Int

int foo(int fst, int snd) 

int foo(int indir[]) 

void foo(int indir[], int *ret)

Compiler?

Behavior
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S1

T1

Why Use an ABI? Interoperability for

API Compat

ABI Compat

S2

Compiler Compiler

FFI

T2

Languages
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Foreign Function Interface (FFI)
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Linking Types
Patterson, Wagner, Ahmed
TyDe ’23
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Rust
Haskell

More C Code 🤬
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Why C?

Shallow Answer: Because 
every language speaks C

Deeper Answer: Because C is 
committed to ABI stability

But Why Does Every 
Language Speak C?
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Rejected: New Warnings = Bad!
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To Stabilize or Not to Stabilize, That Is the Question

Pros

➕ Precise control over interface to 

other languages
➕ Proper support for shared libraries

Cons

➖ Can stunt language growth
➖ Limits compiler optimizations
➖ Tension between flexibility and 

performance
➖ Pressure on library developers

13
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Swift Rust C++

Richer Types Richer ABIs?
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How Should We Specify an ABI?

This Type τ 

15

Is Realized By These Target Programs
⟦τ⟧ = { e | … }

e is ABI compliant with τ if

e ∈ ⟦τ⟧

Semantic Typing using Realistic Realizability [Benton06]

Our Proposal

The run-time contract for using a particular API

T
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Semantic typing / Logical relation 

Syntactic typing



● Functional Source Language 

○ Recursive records and variants, higher-order recursive functions

● C-like Target 

○ Block-based memory, pointer arithmetic

● Automatic Reference Counting (ARC) Implementation

○ Values are boxed and reference-counted

○ Separation logic abstractions for reasoning about RC

Case Study
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● Functional Source Language 

○ Recursive records and variants, higher-order recursive functions

● C-like Target 

○ Block-based memory, pointer arithmetic

● Automatic Reference Counting (ARC) Implementation

○ Values are boxed and reference-counted

○ Separation logic abstractions for reasoning about RC

Case Study

17

e is ABI compliant with τ if

e ∈ ⟦τ⟧

The run-time contract for 
using a particular type

Layout + Behavior
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ℓ ℓ + 1 …
c

Ref. Count

≈

Object DataLocation ℓ is a reference to an 
object that behaves like type T

Later:  
Unboxed types
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ℓ ℓ + 1 …

c≥ 1≥ 2≥ 3

Single reference represents one 
share of underlying object

Reference confers permission to 
increment count & acquire more shares



ℓ ℓ + 1 …

References: Ownership + Sharing

21

≥ 3



ℓ ℓ + 1 …

References: Ownership + Sharing

21

≥ 3≥ 2≥ 1

Reference confers permission to 
decrement count & release shares



ℓ ℓ + 1 …

References: Ownership + Sharing

21

≥ 3≥ 2≥ 1> 1

Reference confers permission to 
decrement count & release shares



ℓ ℓ + 1 …

References: Ownership + Sharing

21

≥ 3≥ 2≥ 1> 11

Reference confers permission to 
decrement count & release shares



ℓ ℓ + 1 …

References: Ownership + Sharing

21

≥ 3≥ 2≥ 1> 110

Reference confers permission to 
decrement count & release shares



References: Ownership + Sharing

22

ℓ ℓ + 1 …

0



References: Ownership + Sharing

22

ℓ ℓ + 1 …

01



References: Ownership + Sharing

22

ℓ ℓ + 1 …

01



Calling Conventions: Simple Functions

23

Pointer to function



Calling Conventions: Simple Functions

23

Pointer to function

Calling convention:
Caller increment



Calling Conventions: Simple Functions

23

Pointer to function

Calling convention:
Caller increment

Callee increment

vs.



Calling Conventions: Simple Functions
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Pointer to function

Calling convention:
Caller increment

Callee increment

vs.

Later:  
Recursive closures
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Aggregate Layout

24

ℓx …ℓ ℓ + 1 ℓy …

Physical footprint Logical footprint includes permission 
to access fields



Object for ℓy

ℓy + 1

unq(ny)ny

Object for ℓx

ℓx + 1

unq(nx)nx

Object for ℓ

Resource Graphs

25

ℓ ℓ + 1

ℓy

shr(1,  )

ℓx

shr(1,  )



Object for ℓy

ℓy + 1

unq(ny)ny

Object for ℓx

ℓx + 1

unq(nx)nx

Object for ℓRoot

Resource Graphs

25

ℓ - 1

shr(1,  )
ℓ ℓ + 1

ℓy

shr(1,  )

ℓx

shr(1,  )



Object for ℓy

ℓy + 1

unq(ny)

Object for ℓx

ℓx + 1

unq(nx)

Object for ℓRoot

Resource Graphs

25

ℓ - 1

shr(1,  )
ℓ ℓ + 1

unq(  ) unq(  )
ℓy

shr(1,  )

ℓx

shr(1,  )

shr   Reference Counter 
unq  Plain Old Data



++(ℓ-1)

Object for ℓy

ℓy + 1

unq(ny)

Object for ℓx

ℓx + 1

unq(nx)

Object for ℓRoot

Resource Graphs

25

ℓ - 1

shr(1,  )
ℓ ℓ + 1

unq(  ) unq(  )
ℓy

shr(1,  )

ℓx

shr(1,  )

shr   Reference Counter 
unq  Plain Old Data

2



Object for ℓy
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Siblings split counter

Agree on resource But share resource
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Composition sums counters at the root, not in objects
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Calling Conventions: Recursive Closures

28

Environment

After ref. counter hits zero

“self” argument
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Rigid Layout

29

No reordering

No extensibility

Like C ABI
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“DLL Hell” 😵💫
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Slib
✅

Tlib

Tcli

Slib
2 Tlib

2

Compile

Update
✅

 is an ABI compatible update from  if T2 T1

[[T2]] ⊆ [[T1]]

Compatible

11

RigidFlexible

CSwift ?
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ℓx

… ℓ + ox … ℓ + oy …

… … …

… ox … oy …
? ?

Client Using Point

ℓy

Offset Table

Like Swift ABI
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ℓx

… ℓ + ox … ℓ + oy …

… … …

… ox … oy …
? ?

Client Using Point

ℓ ℓ + 1 ℓ + 2

Library Providing Point

ℓy ℓy ℓz ℓx

Offset Table

Like Swift ABI
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ensures that
1. For every known field, an accessor is defined that is consistent 

with  ς(𝖯𝗈𝗂𝗇𝗍)[ℓ]
2. A destructor is defined that can clean up a ς(𝖯𝗈𝗂𝗇𝗍)[ℓ]
3. If  is , then the accessors exactly match the declaration 

order of the fields

𝖯𝗈𝗂𝗇𝗍 𝗋𝗂𝗀𝗂𝖽
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Unboxed Data
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Always boxed

Never boxed

Sometimes boxed

Top-level functions Closures
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More in the Paper 

• Variations: Unboxed types, calling conventions, layout optimizations

• Theorems: Safety & memory reclamation, compiler compliance, type evolution

Next Steps 

• Ongoing: Rust-like ABI over Wasm with ownership and borrowing

• Application: Verified FFI



Takeaways
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Compiler Compliance,  Library Evolution,  FFI Safety*  
ABI Spec with Realistic Realizability

e ∈ ⟦τ⟧

Graph-Based Resources for RC
⋄ P

Paper
Slides
Contact

The Methodology

The Case Study


