
Realistic Realizability:
Specifying ABIs You Can Count On

Andrew Wagner, Zachary Eisbach, Amal Ahmed
Northeastern University

October 29, 2024 @ POPV Seminar, Boston University

Realistic Realizability:
Specifying ABIs You Can Count On

Andrew Wagner, Zachary Eisbach, Amal Ahmed
Northeastern University

October 29, 2024 @ POPV Seminar, Boston University

“The standard is haunted … by that Three Letter Demon.
… a contract was forged in blood.”

– JeanHeyd Meneide, WG14 C/C++ Compatibility Chair

😈
🩸

What is an ABI?

2

Application Binary Interface (ABI)

The run-time contract for using a particular API (or for an
entire library), including things like symbol names, calling conventions, and
type layout information.

— Swift

What is an ABI?

2

Application Binary Interface (ABI)

The run-time contract for using a particular API (or for an
entire library), including things like symbol names, calling conventions, and
type layout information.

— Swift
Behavior

What is an ABI?

2

Application Binary Interface (ABI)

The run-time contract for using a particular API (or for an
entire library), including things like symbol names, calling conventions, and
type layout information.

— Swift

foo : (Int, Int) -> Int

int foo(int fst, int snd)

int foo(int indir[])

void foo(int indir[], int *ret)

Compiler?

Behavior

Why Use an ABI?

3

Why Use an ABI?

3

Interoperability

Why Use an ABI?

3

T1 T2

S1 S2

Compiler

Interoperability

Why Use an ABI?

3

T1 T2

S1 S2

Interoperability

Why Use an ABI?

4

S1

T1

S2API Compat

ABI Compat T2

Interoperability for

Compiler Compiler

Components

Compiler 1

5

S1

T1

S2

Compiler 2

Why Use an ABI? Interoperability for

API Compat

ABI Compat T2

Compilers

6

S1

T1

Why Use an ABI? Interoperability for

API Compat

ABI Compat

S2

Compiler Compiler

FFI

T2

Languages

Foreign Function Interfaces

Rust
C

Foreign Function Interface (FFI)

7

Foreign Function Interfaces

Rust
C

Foreign Function Interface (FFI)

7

Linking Types
Patterson, Wagner, Ahmed
TyDe ’23

Safe Foreign Function Interfaces

Rust
Haskell

8

“Rewrite it in Rust!”

Safe Foreign Function Interfaces

Rust
Haskell

8

“Rewrite it in Rust!”

C, the Rosetta Stone?

Rust
Haskell

More C Code 🤬
9

Why C?

10

Why C?

Shallow Answer: Because
every language speaks C

10

Why C?

Shallow Answer: Because
every language speaks C

But Why Does Every
Language Speak C?

10

Why C?

Shallow Answer: Because
every language speaks C

Deeper Answer: Because C is
committed to ABI stability

But Why Does Every
Language Speak C?

10

Platform

C

Today*, Tomorrow, & Forever

* In Theory 🙃

ABI Stability

This API

Will Have
This ABI

11

Platform

C

Today*, Tomorrow, & Forever

* In Theory 🙃

ABI Stability

This API

Will Have
This ABI

11

Platform

C

Today*, Tomorrow, & Forever

* In Theory 🙃

ABI Stability

This API

Will Have
This ABI

11

Rejected: New Warnings = Bad!

Rust

PlatformPlatform

Today Tomorrow?

ABI Instability

12

Rust

PlatformPlatform

Today Tomorrow?

ABI Instability

12

To Stabilize or Not to Stabilize, That Is the Question

Pros

➕ Precise control over interface to

other languages
➕ Proper support for shared libraries

Cons

➖ Can stunt language growth
➖ Limits compiler optimizations
➖ Tension between flexibility and

performance
➖ Pressure on library developers

13

Who is Designing an ABI?

14

Swift Rust C++

Who is Designing an ABI?

14

Swift Rust C++

Richer Types Richer ABIs?

How Should We Specify an ABI?

15

The run-time contract for using a particular API

S

How Should We Specify an ABI?

This Type τ

15

The run-time contract for using a particular API

S

How Should We Specify an ABI?

This Type τ

15

Is Realized By These Target Programs
⟦τ⟧ = { e | … }

The run-time contract for using a particular API

T

S

How Should We Specify an ABI?

This Type τ

15

Is Realized By These Target Programs
⟦τ⟧ = { e | … }

Semantic Typing using Realistic Realizability [Benton06]

The run-time contract for using a particular API

T

S

How Should We Specify an ABI?

This Type τ

15

Is Realized By These Target Programs
⟦τ⟧ = { e | … }

e is ABI compliant with τ if

e ∈ ⟦τ⟧

Semantic Typing using Realistic Realizability [Benton06]

Our Proposal

The run-time contract for using a particular API

T

Interlude: Semantic Typing via Realizability

16

Syntactic typing

Interlude: Semantic Typing via Realizability

16

Semantic typing / Logical relation

Syntactic typing

Interlude: Semantic Typing via Realizability

16

Semantic typing / Logical relation

Syntactic typing

Interlude: Semantic Typing via Realizability

16

Semantic typing / Logical relation

Syntactic typing

● Functional Source Language

○ Recursive records and variants, higher-order recursive functions

● C-like Target

○ Block-based memory, pointer arithmetic

● Automatic Reference Counting (ARC) Implementation

○ Values are boxed and reference-counted

○ Separation logic abstractions for reasoning about RC

Case Study

17

● Functional Source Language

○ Recursive records and variants, higher-order recursive functions

● C-like Target

○ Block-based memory, pointer arithmetic

● Automatic Reference Counting (ARC) Implementation

○ Values are boxed and reference-counted

○ Separation logic abstractions for reasoning about RC

Case Study

17

e is ABI compliant with τ if

e ∈ ⟦τ⟧

The run-time contract for
using a particular type

Layout + Behavior

Automatic Reference Counting Compiler

18

Type system is internally linear

Inspired by Perceus [Reinking et. al. 2021]

Automatic Reference Counting Compiler

18

Type system is internally linear

Explicit occurrences of weakening and contraction

Inspired by Perceus [Reinking et. al. 2021]

Automatic Reference Counting Compiler

18

Type system is internally linear

Explicit occurrences of weakening and contraction

Inspired by Perceus [Reinking et. al. 2021]

References: Layout

19

ℓ ℓ + 1 …
c

Ref. Count

≈

Object DataLocation ℓ is a reference to an
object that behaves like type T

References: Layout

19

ℓ ℓ + 1 …
c

Ref. Count

≈

Object DataLocation ℓ is a reference to an
object that behaves like type T

Later:
Unboxed types

References: Ownership + Sharing

20

ℓ ℓ + 1 …

c

References: Ownership + Sharing

20

ℓ ℓ + 1 …

c≥ 1

Single reference represents one
share of underlying object

References: Ownership + Sharing

20

ℓ ℓ + 1 …

c≥ 1≥ 2≥ 3

Single reference represents one
share of underlying object

References: Ownership + Sharing

20

ℓ ℓ + 1 …

c≥ 1≥ 2≥ 3

Single reference represents one
share of underlying object

Reference confers permission to
increment count & acquire more shares

ℓ ℓ + 1 …

References: Ownership + Sharing

21

≥ 3

ℓ ℓ + 1 …

References: Ownership + Sharing

21

≥ 3≥ 2≥ 1

Reference confers permission to
decrement count & release shares

ℓ ℓ + 1 …

References: Ownership + Sharing

21

≥ 3≥ 2≥ 1> 1

Reference confers permission to
decrement count & release shares

ℓ ℓ + 1 …

References: Ownership + Sharing

21

≥ 3≥ 2≥ 1> 11

Reference confers permission to
decrement count & release shares

ℓ ℓ + 1 …

References: Ownership + Sharing

21

≥ 3≥ 2≥ 1> 110

Reference confers permission to
decrement count & release shares

References: Ownership + Sharing

22

ℓ ℓ + 1 …

0

References: Ownership + Sharing

22

ℓ ℓ + 1 …

01

References: Ownership + Sharing

22

ℓ ℓ + 1 …

01

Calling Conventions: Simple Functions

23

Pointer to function

Calling Conventions: Simple Functions

23

Pointer to function

Calling convention:
Caller increment

Calling Conventions: Simple Functions

23

Pointer to function

Calling convention:
Caller increment

Callee increment

vs.

Calling Conventions: Simple Functions

23

Pointer to function

Calling convention:
Caller increment

Callee increment

vs.

Later:
Recursive closures

Aggregate Layout

24

Aggregate Layout

24

ℓx …ℓ ℓ + 1 ℓy …

Physical footprint

Aggregate Layout

24

ℓx …ℓ ℓ + 1 ℓy …

Physical footprint Logical footprint includes permission
to access fields

Object for ℓy

ℓy + 1

unq(ny)ny

Object for ℓx

ℓx + 1

unq(nx)nx

Object for ℓ

Resource Graphs

25

ℓ ℓ + 1

ℓy

shr(1,)

ℓx

shr(1,)

Object for ℓy

ℓy + 1

unq(ny)ny

Object for ℓx

ℓx + 1

unq(nx)nx

Object for ℓRoot

Resource Graphs

25

ℓ - 1

shr(1,)
ℓ ℓ + 1

ℓy

shr(1,)

ℓx

shr(1,)

Object for ℓy

ℓy + 1

unq(ny)

Object for ℓx

ℓx + 1

unq(nx)

Object for ℓRoot

Resource Graphs

25

ℓ - 1

shr(1,)
ℓ ℓ + 1

unq() unq()
ℓy

shr(1,)

ℓx

shr(1,)

shr Reference Counter
unq Plain Old Data

++(ℓ-1)

Object for ℓy

ℓy + 1

unq(ny)

Object for ℓx

ℓx + 1

unq(nx)

Object for ℓRoot

Resource Graphs

25

ℓ - 1

shr(1,)
ℓ ℓ + 1

unq() unq()
ℓy

shr(1,)

ℓx

shr(1,)

shr Reference Counter
unq Plain Old Data

2

Object for ℓy

ℓy + 1

unq(ny)

Object for ℓx

ℓx + 1

unq(nx)

++(ℓ-1);

Root Object for ℓ

Resource Graphs

25

ℓ - 1

shr(1,)
ℓ ℓ + 1

unq() unq()
ℓy

shr(1,)

ℓx

shr(1,)

shr Reference Counter
unq Plain Old Data

ℓy

shr(1,)

22

++ℓy

ℓy + 1

unq(ny)ny

ℓx + 1

unq(nx)nx

Resource Graphs

25

ℓ - 1

shr(1,)
ℓ ℓ + 1

ℓy

shr(1,)

ℓx

shr(1,)

ℓy

shr(1,)

222 1

1

1

ℓy + 1

unq(ny)ny

ℓx + 1

unq(nx)nx

Resource Graphs

25

ℓ - 1

shr(1,)

ℓ ℓ + 1

ℓx

shr(1,)

ℓy

shr(1,)

2

1

111 + 1

Resources

26

Resources

26

Resources

26

Siblings split counter

Agree on resource But share resource

Modalities

27

Object for ℓ

Modalities

27

Jump Modality: It is possible to “jump” from ℓ to an object that satisfies P

P≈ ℓ

shr(1,)

Object for ℓ

Modalities

27

Jump Modality: It is possible to “jump” from ℓ to an object that satisfies P

P≈ ℓ

shr(1,)⋆ 2

Composition sums counters at the root, not in objects

Object for ℓ

Modalities

27

Jump Modality: It is possible to “jump” from ℓ to an object that satisfies P

P≈ ℓ

shr(1,)

Object for ℓ

Modalities

27

Jump Modality: It is possible to “jump” from ℓ to an object that satisfies P

P≈ ℓ

shr(1,)

Reachability Modality : It is possible to reach P via some sequence of jumps⋄ P
Allows reading and incrementing from deeply nested objects

Object for ℓ

Modalities

27

Jump Modality: It is possible to “jump” from ℓ to an object that satisfies P

P≈ ℓ

shr(1,)

Reachability Modality : It is possible to reach P via some sequence of jumps⋄ P
Allows reading and incrementing from deeply nested objects

Object for ℓ

Modalities

27

Jump Modality: It is possible to “jump” from ℓ to an object that satisfies P

P≈ ℓ

shr(1,)

Reachability Modality : It is possible to reach P via some sequence of jumps⋄ P
Allows reading and incrementing from deeply nested objects

Calling Conventions: Recursive Closures

28

Calling Conventions: Recursive Closures

28

Environment

Calling Conventions: Recursive Closures

28

Environment

“self” argument

Calling Conventions: Recursive Closures

28

Environment

After ref. counter hits zero

“self” argument

Rigid Layout

29

Like C ABI

Rigid Layout

29

No reordering
Like C ABI

Rigid Layout

29

No reordering

No extensibility

Like C ABI

Library Evolution

30

Scli

Slib
✅

Tlib

Tcli

Compile

✅

11

❓
❓

Library Evolution

30

Scli

Slib
✅

Tlib

Tcli

Slib
2 Tlib

2

Compile

Update
✅

11

“DLL Hell” 😵💫

❓
❓

✅
✅

Library Evolution

30

Scli

Slib
✅

Tlib

Tcli

Slib
2 Tlib

2

Compile

Update
✅

 is an ABI compatible update from if T2 T1

[[T2]] ⊆ [[T1]]

Compatible

11

❓
❓

✅
✅

Library Evolution

30

Scli

Slib
✅

Tlib

Tcli

Slib
2 Tlib

2

Compile

Update
✅

 is an ABI compatible update from if T2 T1

[[T2]] ⊆ [[T1]]

Compatible

11

RigidFlexible

CSwift ?

Resilient Layout

31

Like Swift ABI

Resilient Layout

31

ℓx

… ℓ + ox … ℓ + oy …

… … …

… ox … oy …
? ?

Client Using Point

ℓy

Offset Table

Like Swift ABI

ox oy oz
2 0 1

Resilient Layout

31

ℓx

… ℓ + ox … ℓ + oy …

… … …

… ox … oy …
? ?

Client Using Point

ℓ ℓ + 1 ℓ + 2

Library Providing Point

ℓy ℓy ℓz ℓx

Offset Table

Like Swift ABI

Interlude: Type Polymorphism

32

Resilient Layout: Signature Predicate

33

Resilient Layout: Signature Predicate

33

Resilient Layout: Signature Predicate

33

ensures that

Resilient Layout: Signature Predicate

33

ensures that
1. For every known field, an accessor is defined that is consistent

with ς(𝖯𝗈𝗂𝗇𝗍)[ℓ]

Resilient Layout: Signature Predicate

33

ensures that
1. For every known field, an accessor is defined that is consistent

with ς(𝖯𝗈𝗂𝗇𝗍)[ℓ]
2. A destructor is defined that can clean up a ς(𝖯𝗈𝗂𝗇𝗍)[ℓ]

Resilient Layout: Signature Predicate

33

ensures that
1. For every known field, an accessor is defined that is consistent

with ς(𝖯𝗈𝗂𝗇𝗍)[ℓ]
2. A destructor is defined that can clean up a ς(𝖯𝗈𝗂𝗇𝗍)[ℓ]
3. If is , then the accessors exactly match the declaration

order of the fields

𝖯𝗈𝗂𝗇𝗍 𝗋𝗂𝗀𝗂𝖽

Evolvable Types

34

struct or enum

Evolvable Types

34

Like @frozen in SwiftLike non_exhaustive in Rust struct or enum

Evolvable Types

34

Like @frozen in SwiftLike non_exhaustive in Rust struct or enum

Evolvable Types

34

Like @frozen in SwiftLike non_exhaustive in Rust struct or enum

Unboxed Data

35

Always boxed

Never boxed

Sometimes boxed

Unboxed Data

35

Always boxed

Never boxed

Sometimes boxed

Unboxed Data

35

Always boxed

Never boxed

Sometimes boxed

Unboxed Data

35

Always boxed

Never boxed

Sometimes boxed

Top-level functions Closures

36

More in the Paper

• Variations: Unboxed types, calling conventions, layout optimizations

• Theorems: Safety & memory reclamation, compiler compliance, type evolution

Next Steps

• Ongoing: Rust-like ABI over Wasm with ownership and borrowing

• Application: Verified FFI

Takeaways

37

Compiler Compliance, Library Evolution, FFI Safety*
ABI Spec with Realistic Realizability

e ∈ ⟦τ⟧

Graph-Based Resources for RC
⋄ P

Paper
Slides
Contact

The Methodology

The Case Study

