Realistic Realizability: Specifying ABIs You Can Count On

Andrew Wagner, Zachary Eisbach, Amal Ahmed Northeastern University October 29, 2024 @ POPV Seminar, Boston University

Realistic Realizability: Specifying ABIs You Can Count On

- Andrew Wagner, Zachary Eisbach, Amal Ahmed Northeastern University
- October 29, 2024 @ POPV Seminar, Boston University
- JeanHeyd Meneide, WG14 C/C++ Compatibility Chair

What is an ABI?

Application Binary Interface (ABI)

The run-time contract for using a particular API (or for an entire library), including things like symbol names, **calling conventions**, and type **layout** information.

- Swift

What is an ABI?

Application Binary Interface (ABI)

type layout information.

- Swift

What is an ABI?

Application Binary Interface (ABI)

type **layout** information.

— Swift

foo : (Int, Int) -> Int

Compiler?

The run-time contract for using a particular API (or for an entire library), including things like symbol names, calling conventions, and **Behavior**

int foo(int fst, int snd)

int foo(int indir[])

void foo(int indir[], int *ret)

Why Use an ABI?

Why Use an ABI? Interoperability

Why Use an ABI? Interoperability

Compiler

Why Use an ABI? Interoperability

Why Use an ABI? Interoperability for Compilers S_1 Compiler 1

Compiler

Foreign Function Interfaces

Foreign Function Interfaces

Linking Types

Patterson, Wagner, Ahmed TyDe '23

Safe Foreign Function Interfaces

"Rewrite it in Rust!"

"Rewrite it in Rust!"

C, the Rosetta Stone?

Shallow Answer: Because every language speaks C

Shallow Answer: Because every language speaks C

But <u>Why</u> Does Every Language Speak C?

Shallow Answer: Because every language speaks C

But <u>Why</u> Does Every Language Speak C?

Deeper Answer: Because **C** is committed to ABI stability

Today*, Tomorrow, & Forever

n2526: use const for data from the library that shall not be modified

Submitter: Philipp Klaus Krause Submission Date:2020-05-11

Today*, Tomorrow, & Forever

Rejected: New Warnings = Bad!

n2526: use const for data from the library that shall not be modified

Submitter: Philipp Klaus Krause Submission Date:2020-05-11

Today*, Tomorrow, & Forever

ABI Instability

Rust Today Platform

ABI Instability

Rust Today Platform

To Stabilize or Not to Stabilize, That Is the Question

Pros

Precise control over interface to other languages

Proper support for shared libraries

Cons

- Can stunt language growth
- Limits compiler optimizations
- Tension between flexibility and performance
- Pressure on library developers

Who is Designing an ABI?

Swift

Rust

C++

Who is Designing an ABI?

Swift

Richer Types

Rust

C++

The run-time contract for using a particular API

This Type τ

The run-time contract for using a particular API

This Type τ

$\llbracket \mathsf{T} \rrbracket = \{ \underline{\mathsf{e}} \mid \dots \}$

The run-time contract for using a particular API

Is *Realized By* These Target Programs

This Type τ

 $\llbracket \mathsf{T} \rrbracket = \{ \underline{\mathsf{e}} \mid \dots \}$

Semantic Typing using *Realistic Realizability* [Benton06]

The run-time contract for using a particular API

Is *Realized By* These Target Programs

The run-time contract for using a particular API

This Type τ

Is Realized By $\llbracket \tau \rrbracket = \{ \begin{array}{c} e \\ \end{bmatrix} \dots \}$

Semantic Typing using Realistic Realizability [Benton06]

Our Proposal \underline{e} is ABI compliant with τ if $\underline{e} \in \llbracket \tau \rrbracket$

Is Realized By These Target Programs

Interlude: Semantic Typing via Realizability

 $\Gamma \vdash e : T$ Syntactic typing

Interlude: Semantic Typing via Realizability

- $\Gamma \vdash e : T$ Syntactic typing
- $\Gamma \models e : T$ Semantic typing / Logical relation

Interlude: Semantic Typing via Realizability

 $\left\{ \text{``Prestate like } \Gamma \text{''} \right\} \quad e \quad \left\{ v. \text{``v like } T \text{''} \right\}$

- $\Gamma \vdash e : T$ Syntactic typing
- $\Gamma \models e : T$ Semantic typing / Logical relation

Interlude: Semantic Typing via Realizability

 $\left\{ \text{``Prestate like } \Gamma \text{''} \right\} \quad e \quad \left\{ v. \text{``v like } T \text{''} \right\}$

 $\left\{ \star \overline{V[[T_x]](x)} \right\}$

- $\Gamma \vdash e : T$ Syntactic typing
- $\Gamma \models e : T$ Semantic typing / Logical relation $(\Gamma = \mathbf{x} : T_{\mathbf{x}})$

$$e \quad \left\{ v. \mathcal{V}[[T]](v) \right\}$$

Case Study

- Functional Source Language
 - Recursive records and variants, higher-order recursive functions \bigcirc
- C-like Target
 - Block-based memory, pointer arithmetic \bigcirc
- Automatic Reference Counting (ARC) Implementation
 - Values are boxed and reference-counted \bigcirc
 - Separation logic abstractions for reasoning about RC \bigcirc

Case Study

- Functional Source Language
 - Recursive records and variants, higher-order recursive functions
- <u>C-like Target</u>
 - Block-based memory, pointer arithmetic
- Automatic Reference Counting (ARC) Implementation
 - Values are boxed and reference-counted
 - Separation logic abstractions for reasoning about RC

Automatic Reference Counting Compiler

 $\Gamma \vdash \mathbf{e} : \mathbf{T}$

Type system is internally linear

 $\frac{\Gamma_1 \vdash \mathbf{e}_1 : \mathsf{T}_1 \qquad \Gamma_2, \mathsf{x} : \mathsf{T}_1 \vdash \mathbf{e}_2 : \mathsf{T}_2 \qquad \Gamma_2 \not\ni \mathsf{x}}{\Gamma_1, \Gamma_2 \vdash \mathsf{let}\,\mathsf{x} = \mathsf{e}_1; \mathsf{e}_2 : \mathsf{T}_2} \qquad (\mathsf{let}^+)$

Inspired by Perceus [Reinking et. al. 2021]

Automatic Reference Counting Compiler

 $\Gamma \vdash \mathbf{e} : \mathbf{T}$

 $\frac{\Gamma_1 \vdash \mathbf{e}_1 : \mathsf{T}_1}{\Gamma_2 \vdash \mathbf{e}_2 : \mathsf{T}_2} \qquad \frac{\Gamma_2 \not \ni \mathsf{x}}{\Gamma_2 \vdash \mathsf{e}_2}$ (let⁺) $\Gamma_1, \Gamma_2 \vdash \text{let } \mathbf{x} = \mathbf{e}_1; \mathbf{e}_2 : \mathbf{T}_2$

 $\Gamma \ni x : T' \quad \Gamma, x : T' \vdash e : T$ (dup^+) **Γ** ⊢ e : **T**

Type system is internally linear

Explicit occurrences of weakening and contraction

$$\frac{\Gamma \vdash e : T}{\Gamma, x : T' \vdash e : T}$$
 (drop⁺)

Inspired by *Perceus* [Reinking et. al. 2021]

Automatic Reference Counting Compiler

$\Gamma \vdash \mathbf{e} : \mathsf{T} \rightsquigarrow \mathbf{e}$

Type system is internally linear

 $\frac{\Gamma_1 \vdash e_1 : \mathsf{T}_1 \rightsquigarrow e_1 \quad \Gamma_2, \mathsf{x} : \mathsf{T}_1 \vdash e_2 : \mathsf{T}_2 \rightsquigarrow e_2 \quad \Gamma_2 \not \ni}{\Gamma_1, \Gamma_2 \vdash \mathsf{let}\,\mathsf{x} = e_1; e_2 : \mathsf{T}_2 \rightsquigarrow \mathsf{const}\,\mathsf{x} = e_1; e_2}$

Explicit occurrences of weakening and contraction

 $\frac{\Gamma \ni x : T' \quad \Gamma, x : T' \vdash e : T \rightsquigarrow e}{\Gamma \vdash e : T \rightsquigarrow dup_{T'}(x); e} (dup^+)$

$$\xrightarrow{\mathbf{P} \times} (\mathsf{let}^+) \qquad \qquad \mathsf{x} : \mathsf{T} \vdash \mathsf{x} : \mathsf{T} \rightsquigarrow \mathsf{x} (\mathsf{var}^+)$$

$$\frac{\Gamma \vdash e : T \rightsquigarrow e}{\Gamma, x : T' \vdash e : T \rightsquigarrow drop_{T'}(x); e} (drop^+)$$

Inspired by *Perceus* [Reinking et. al. 2021]

References: Layout

Location ℓ is a reference to an object that behaves like type T

 $\mathcal{R}\left[\!\left[T\right]\!\right](l)$

References: Layout

Location ℓ is a reference to an object that behaves like type T

$\mathcal{R}\left[\!\left[T\right]\!\right](\ell)$

l	ℓ + 1
С	$O\llbracket T \rrbracket (\ell + 1)$

References: Ownership + Sharing Single reference represents one

share of underlying object

 $\mathcal{R}\left[\!\left[T\right]\!\right]\left(\ell\right)$

References: Ownership + Sharing Single reference represents one

share of underlying object

 $\mathcal{R}\left[\!\left[T\right]\!\right]\left(\ell\right)$

Single reference represents one share of underlying object

 $\mathcal{R}\left[\!\left[T\right]\!\right](\ell)$

Reference confers permission to increment count & acquire more shares

$\left\{ \mathcal{R}\left[\!\left[T\right]\!\right](\boldsymbol{\ell})\right\} + \boldsymbol{\ell}\left\{n. \ \boldsymbol{\Gamma} n > 1^{\neg} \star \mathcal{R}\left[\!\left[T\right]\!\right](\boldsymbol{\ell}) \star \mathcal{R}\left[\!\left[T\right]\!\right](\boldsymbol{\ell})\right\} \right\}$

$\mathcal{R} \llbracket T \rrbracket (\ell)$

 $\begin{array}{c} \ell & \ell+1 \dots \\ \geq \mathbf{3} & \mathcal{O} \llbracket T \rrbracket (\ell+1) \\ & & \mathcal{R} \llbracket T \rrbracket (\ell) \end{array} \end{array}$

$\mathcal{R}\left[\!\left[T\right]\!\right](\ell)$

Reference confers permission to decrement count & release shares

$$\left\{ \mathcal{R}[[T]](\boldsymbol{\ell}) \right\} = -\boldsymbol{\ell} \left\{ \boldsymbol{n}. \right\}$$

$\mathcal{R}\left[\!\left[T\right]\!\right](\ell)$

Reference confers permission to decrement count & release shares

$$\left\{ \mathcal{R}[[T]](\boldsymbol{\ell}) \right\} = -\boldsymbol{\ell} \left\{ \boldsymbol{n} \cdot \left(\boldsymbol{n} > \boldsymbol{0} \right) \land \boldsymbol{m} \right\}$$

$\mathcal{R}\left[\!\left[T\right]\!\right](\ell)$

Reference confers permission to decrement count & release shares

$$\left\{ \mathcal{R}[[T]](\boldsymbol{\ell}) \right\} = -\boldsymbol{\ell} \left\{ \boldsymbol{n} \cdot \left(\boldsymbol{n} > \boldsymbol{0} \right) \land \boldsymbol{m} \right\}$$

IP

Reference confers permission to decrement count & release shares

$$\left\{ \mathcal{R}[[T]](\boldsymbol{\ell}) \right\} = -\boldsymbol{\ell} \left\{ n \cdot \left(\lceil n > 0 \rceil \land em \right) \right\}$$

$\mathsf{np}) \lor \left(\ulcorner n = 0 \urcorner \star \ell \mapsto 0 \star O \llbracket T \rrbracket (\ell + 1) \right)$

l	ℓ +	1
, 0	0	T]](/+1)

$\left\{ \boldsymbol{\ell} \mapsto \boldsymbol{1} \star \mathcal{O}[\boldsymbol{T}](\boldsymbol{\ell} + \boldsymbol{1}) \right\} \boldsymbol{e} \left\{ \mathcal{Q} \right\}$

Calling Conventions: Simple Functions

$O\left[\!\left[T_1 \to T_2\right]\!\right](l) \stackrel{\wedge}{\approx} \exists f. l \mapsto f \star$

Pointer to function

Calling Conventions: Simple Functions $O[[T_1 \to T_2]](\ell) \stackrel{\wedge}{\approx} \exists f. \ell \mapsto f \star$ $\forall \boldsymbol{\ell}_1. \left\{ \mathcal{R}\left[\!\left[\boldsymbol{T}_1\right]\!\right]\!\left(\boldsymbol{\ell}_1\right) \right\} \boldsymbol{f}(\boldsymbol{\ell}_1) \left\{ \boldsymbol{\ell}_2. \ \mathcal{R}\left[\!\left[\boldsymbol{T}_2\right]\!\right]\!\left(\boldsymbol{\ell}_2\right) \right\}$

Pointer to function

Calling convention: **Caller increment**

Calling Conventions: Simple Functions

 $O[\![T_1 \to T_2]\!](\ell) \stackrel{\wedge}{\approx} \exists f. \ell \mapsto f \star$ $\forall \boldsymbol{\ell}_1. \left\{ \mathcal{R}\left[\!\left[\boldsymbol{T}_1\right]\!\right](\boldsymbol{\ell}_1) \right\} \boldsymbol{f}(\boldsymbol{\ell}_1) \left\{ \boldsymbol{\ell}_2. \mathcal{R}\left[\!\left[\boldsymbol{T}_2\right]\!\right](\boldsymbol{\ell}_2) \right\} \right\}$

VS.

Pointer to function

Calling convention: **Caller increment**

 $\forall \boldsymbol{\ell}_{1}. \left\{ \mathcal{R}\left[\!\left[\boldsymbol{T}_{1}\right]\!\right](\boldsymbol{\ell}_{1}) \right\} \boldsymbol{f}(\boldsymbol{\ell}_{1}) \left\{ \boldsymbol{\ell}_{2}. \mathcal{R}\left[\!\left[\boldsymbol{T}_{2}\right]\!\right](\boldsymbol{\ell}_{2}) \star \mathcal{R}\left[\!\left[\boldsymbol{T}_{1}\right]\!\right](\boldsymbol{\ell}_{1}) \right\}$ **Callee** increment

Calling Conventions: Simple Functions

 $O[T_1 \to T_2](\ell) \stackrel{\wedge}{\approx} \exists f. \ell \mapsto f \star$ $\forall \boldsymbol{\ell}_1. \left\{ \mathcal{R}\left[\!\left[\boldsymbol{T}_1\right]\!\right]\!\left(\boldsymbol{\ell}_1\right) \right\} \boldsymbol{f}(\boldsymbol{\ell}_1) \left\{ \boldsymbol{\ell}_2. \ \mathcal{R}\left[\!\left[\boldsymbol{T}_2\right]\!\right]\!\left(\boldsymbol{\ell}_2\right) \right\}$

VS. $\forall \boldsymbol{\ell}_{1}. \left\{ \mathcal{R}\left[\!\left[\boldsymbol{T}_{1}\right]\!\right](\boldsymbol{\ell}_{1}) \right\} \boldsymbol{f}(\boldsymbol{\ell}_{1}) \left\{ \boldsymbol{\ell}_{2}. \mathcal{R}\left[\!\left[\boldsymbol{T}_{2}\right]\!\right](\boldsymbol{\ell}_{2}) \star \mathcal{R}\left[\!\left[\boldsymbol{T}_{1}\right]\!\right](\boldsymbol{\ell}_{1}) \right\}$ **Callee** increment Later: Recursive closures

Pointer to function

Calling convention: Caller increment

Aggregate Layout $O\left[\left[\operatorname{struct}\operatorname{Point}\left\{x:\mathbb{Z},y:\mathbb{Z}\right\}\right]\left(\ell\right)\right]$

Aggregate Layout $O[[struct Point {x : Z, y : Z}]]({)$

Aggregate Layout

Resource Graphs

Resource Graphs

Resources

$\rho \in \text{Res} \triangleq \text{Loc} \rightharpoonup \text{own}(\text{VAL}) + \text{shr}(\mathbb{N}_{>0} \times \text{Res})$

Resources

$\rho \in \text{Res} \triangleq \text{Loc} \rightarrow \text{own}(\text{VAL}) + \text{shr}(\mathbb{N}_{>0} \times \text{Res})$

$\rho_1 \bullet \rho_2 = \rho_1 \uplus \rho_2 \quad (\text{if dom}(\rho_1) \cap \text{dom}(\rho_2) = \emptyset)$

Resources

$\rho \in \text{Res} \triangleq \text{Loc} \rightarrow \text{own}(\text{VAL}) + \text{shr}(\mathbb{N}_{>0} \times \text{Res})$

$\rho_1 \bullet \rho_2 = \rho_1 \uplus \rho_2 \quad (\text{if dom}(\rho_1) \cap \text{dom}(\rho_2) = \emptyset)$

Agree on resource

Siblings split counter $\ell \mapsto \operatorname{shr}(n_1, \rho) \bullet \ell \mapsto \operatorname{shr}(n_2, \rho) = \ell \mapsto \operatorname{shr}(n_1 + n_2, \rho)$ But share resource

Jump Modality: It is possible to "jump" from ℓ to an object that satisfies P

 $(a_{\ell}P \star (a_{\ell}P) \approx$

Composition sums counters at the root, not in objects

Jump Modality: It is possible to "jump" from ℓ to an object that satisfies P

Reachability Modality $\diamond P$: It is possible to reach P via some sequence of jumps

Allows reading and incrementing from deeply nested objects

Reachability Modality $\diamond P$: It is possible to reach P via some sequence of jumps

Allows reading and incrementing from deeply nested objects

*()***-INCR**

Jump Modality: It is possible to "jump" from ℓ to an object that satisfies P

Reachability Modality $\diamond P$: It is possible to reach P via some sequence of jumps

Allows reading and incrementing from deeply nested objects

$$\vdash \diamond @_{\ell} P$$

$$n > 1^{\neg} \star Q \star @_{\ell} P$$

Calling Conventions: Recursive Closures

$O\llbracket T_1 \to T_2 \rrbracket(\ell) \triangleq \exists \text{ call}$

 $\ell \mapsto call$

Calling Conventions: Recursive Closures

$O[[T_1 \rightarrow T_2]](\ell) \triangleq \exists \text{ call, destroy}, Q_{env}$. Environment

 $l \mapsto call \star l + 1 \mapsto destroy \star Q_{env}$

After ref. counter hits zero

Rigid Layout

 $O\left[\left[\operatorname{struct}\operatorname{Point}\left\{x:\mathbb{Z},y:\mathbb{Z}\right\}\right]\left(\ell\right)\right]$

$= \exists \ell_x, \ell_y, \ell_y \mapsto \ell_x \star \ell + 1 \mapsto \ell_y \star \mathcal{R} \llbracket \mathbb{Z} \rrbracket (\ell_x) \star \mathcal{R} \llbracket \mathbb{Z} \rrbracket (\ell_y)$

Like C ABI

Rigid Layout

 $O\left[\left[\operatorname{struct}\operatorname{Point}\left\{x:\mathbb{Z},y:\mathbb{Z}\right\}\right]\right]$

No reordering upd struct Point { $x : \mathbb{Z}, y : \mathbb{Z}$ } \Rightarrow struct Point { $y : \mathbb{Z}, x : \mathbb{Z}$ }

$= \exists \ell_x, \ell_y, \ell_y \cdot \ell \mapsto \ell_x \star \ell + 1 \mapsto \ell_y \star \mathcal{R} \llbracket \mathbb{Z} \rrbracket (\ell_x) \star \mathcal{R} \llbracket \mathbb{Z} \rrbracket (\ell_y)$ Like C ABI

Rigid Layout

 $O[[struct Point {x : Z, y : Z}]]({)$

No reordering upd struct Point $\{x : \mathbb{Z}, y : \mathbb{Z}\} \not\Rightarrow$ struct Point $\{y : \mathbb{Z}, x : \mathbb{Z}\}$

No extensibility

$= \exists \ell_x, \ell_y, \ell_y \cdot \ell \mapsto \ell_x \star \ell + 1 \mapsto \ell_y \star \mathcal{R} \llbracket \mathbb{Z} \rrbracket (\ell_x) \star \mathcal{R} \llbracket \mathbb{Z} \rrbracket (\ell_y)$ Like C ABI

- upd struct Point { $x : \mathbb{Z}, y : \mathbb{Z}$ } $\not\Rightarrow$ struct Point { $x : \mathbb{Z}, y : \mathbb{Z}, z : \mathbb{Z}$ }

T_2 is an ABI compatible update from T_1 if

$\llbracket T_2 \rrbracket \subseteq \llbracket T_1 \rrbracket$

T_2 is an ABI compatible update from T_1 if

Resilient Layout

Like Swift ABI

Resilient Layout Client Using Point

 Ox	 Oy	 Offset Table
?	?	

Like Swift ABI

Resilient Layout Client Using Point

 Ox	 Oy	 Offset Table
?	?	

Like Swift ABI

Library Providing Point

Ox	Oy	Oz
2	0	1

Interlude: Type Polymorphism

 $\begin{array}{ll} \mathcal{V}\llbracket \alpha \rrbracket_{\delta}(v) & \triangleq & \delta(\alpha)(v) \\ \mathcal{V}\llbracket \forall \, \alpha. \, T \rrbracket_{\delta}(v) & \triangleq & \forall P \in \mathsf{SemTy}. \, \mathcal{E}\llbracket T \rrbracket_{\delta[\alpha \mapsto P]}(v[]) \end{array}$ $\mathcal{D}[\![\Delta]\!](\delta)$ $\triangleq \quad \delta \in \operatorname{dom}(\Delta) \to \operatorname{Sem}\mathsf{Ty}$

Resilient Layout: Signature Predicate

Resilient Layout: Signature Predicate $O[\![\operatorname{Point}]\!]_{\varsigma}(\ell) \stackrel{\Delta}{\approx} \varsigma(\operatorname{Point})[\ell]$

Resilient Layout: Signature Predicate $O[[Point]]_{\varsigma}(\ell) \stackrel{\Delta}{\approx} \varsigma(Point)[\ell]$ $S[[\Sigma]](\varsigma)$ ensures that

Resilient Layout: Signature Predicate $O[\![\operatorname{Point}]\!]_{\zeta}(\ell) \stackrel{\Delta}{\approx} \zeta(\operatorname{Point})[\ell]$ $S \| \Sigma \| (\zeta)$ ensures that with $\varsigma(\text{Point})[\ell]$

1. For every known field, an accessor is defined that is consistent

Resilient Layout: Signature Predicate $O[[\operatorname{Point}]]_{\zeta}(\ell) \stackrel{\wedge}{\approx} \zeta(\operatorname{Point})[\ell]$ $S \| \Sigma \| (\zeta)$ ensures that with $\zeta(\text{Point})[\ell]$

1. For every known field, an accessor is defined that is consistent

2. A destructor is defined that can clean up a $\varsigma(Point)[\ell]$

Resilient Layout: Signature Predicate $O[\![\operatorname{Point}]\!]_{\zeta}(\ell) \stackrel{\wedge}{\approx} \zeta(\operatorname{Point})[\ell]$ $S \| \Sigma \| (\zeta)$ ensures that with $\varsigma(\text{Point})[\ell]$

2. A destructor is defined that can clean up a $\varsigma(Point)[\ell]$

3. If **Point** is **rigid**, then the accessors exactly match the **declaration** order of the fields

1. For every known field, an accessor is defined that is consistent

Mode \ni m ::= flex | rigid

Like non_exhaustive in Rust

Mode ∋ m ::= flex | rigid

Unboxed Data

$\mathcal{V}\llbracket T \rrbracket(\boldsymbol{\ell}) \triangleq \exists (\boldsymbol{b}, \boldsymbol{i}) = \boldsymbol{\ell}.$

Always boxed (T = struct -)Never boxed $(T = \mathbb{Z})$ Sometimes boxed $(T = - \rightarrow -)$

Unboxed Data

$\mathcal{V}\llbracket T \rrbracket (\boldsymbol{\ell}) \triangleq \exists (\boldsymbol{b}, \boldsymbol{i}) = \boldsymbol{\ell}.$ $\left(\ulcorner i = 1 \urcorner \star \mathcal{R} \llbracket T \rrbracket (\ell - 1) \right)$

Always boxed (T = struct -)Never boxed $(T = \mathbb{Z})$ Sometimes boxed $(T = - \rightarrow -)$

Unboxed Data

$\mathcal{V}\llbracket T \rrbracket (\boldsymbol{\ell}) \triangleq \exists (\boldsymbol{b}, \boldsymbol{i}) = \boldsymbol{\ell}.$ $\left[\ulcorner i = 1 \urcorner \star \mathcal{R} \llbracket T \rrbracket (\ell - 1) \right]$ $\mathbf{v} \vdash i = 0 \lor \star \mathcal{U}[[T]](\mathbf{b})$

Always boxed (T = struct -)Never boxed $(T = \mathbb{Z})$ Sometimes boxed $(T = - \rightarrow -)$

Unboxed Data

```
\mathcal{V}[\![T]\!](\boldsymbol{\ell}) \triangleq \exists (\boldsymbol{b}, \boldsymbol{i}) = \boldsymbol{\ell}.
\left[ \ulcorner i = 1 \urcorner \star \mathcal{R} \llbracket T \rrbracket (\ell - 1) \right]
   \lceil i = 0 \rceil \star \mathcal{U}\llbracket T \rrbracket(b)
          Top-level functions
```

Always boxed (T = struct -)Never boxed $(T = \mathbb{Z})$ Sometimes boxed $\left(\left[\neg i = 0 \neg \star \mathcal{U} \left[T \right] \right] (b) \right) \lor \left(\left[\neg i = 1 \neg \star \mathcal{R} \left[T \right] \right] (\ell - 1) \right) \quad (T = - -)$ Closures

More in the Paper

- Variations: Unboxed types, calling conventions, layout optimizations
- Theorems: Safety & memory reclamation, compiler compliance, type evolution

Next Steps

- Ongoing: Rust-like ABI over Wasm with ownership and borrowing
- Application: Verified FFI

