Realistic Realizability: Specifying ABIs You Can Count On

Andrew Wagner, Zachary Eisbach, Amal Ahmed Northeastern University OOPSLA 2024, Pasadena, CA

What is an ABI?

Application Binary Interface (ABI)

The run-time contract for using a particular API (or for an entire library), including things like symbol names, **calling conventions**, and type **layout** information.

- Swift

What is an ABI?

Application Binary Interface (ABI)

type layout information.

- Swift

What is an ABI?

Application Binary Interface (ABI)

type **layout** information.

— Swift

foo : (Int, Int) -> Int

?

The run-time contract for using a particular API (or for an entire library), including things like symbol names, calling conventions, and **Behavior**

int foo(int indir[])

void foo(int indir[], int *ret)

Why Use an ABI?

Why Use an ABI? Interoperability

Why Use an ABI? Interoperability

Why Use an ABI? Interoperability

Compiler

Why Use an ABI? Interoperability for Compilers S_1 Compiler 1

Compiler

Who is Designing an ABI?

Swift

Rust

C++

Who is Designing an ABI?

Swift

Richer Types

Rust

C++

The run-time contract for using a particular API

This Type τ

The run-time contract for using a particular API

This Type τ

$\llbracket \mathsf{T} \rrbracket = \{ \underline{\mathsf{e}} \mid \dots \}$

The run-time contract for using a particular API

Is *Realized By* These Target Programs

This Type τ

 $\llbracket \mathsf{T} \rrbracket = \{ \underline{\mathsf{e}} \mid \dots \}$

Semantic Typing using *Realistic Realizability* [Benton06]

The run-time contract for using a particular API

Is *Realized By* These Target Programs

The run-time contract for using a particular API

This Type τ

Is Realized By $\llbracket \tau \rrbracket = \{ \begin{array}{c} e \\ \end{bmatrix} \dots \}$

Semantic Typing using Realistic Realizability [Benton06]

Our Proposal \underline{e} is ABI compliant with τ if $\underline{e} \in \llbracket \tau \rrbracket$

Is Realized By These Target Programs

Case Study

- Functional Source Language
 - Recursive records and variants, higher-order recursive functions \bigcirc
- C-like Target
 - Block-based memory, pointer arithmetic \bigcirc
- Automatic Reference Counting (ARC) Implementation
 - Values are boxed and reference-counted \bigcirc
 - Separation logic abstractions for reasoning about RC \bigcirc

Case Study

- Functional Source Language
 - Recursive records and variants, higher-order recursive functions
- <u>C-like Target</u>
 - Block-based memory, pointer arithmetic
- Automatic Reference Counting (ARC) Implementation
 - Values are boxed and reference-counted
 - Separation logic abstractions for reasoning about RC

Case Study

- Functional Source Language
 - Recursive records and variants, higher-order recursive functions
- <u>C-like Target</u>
 - Block-based memory, pointer arithmetic
- Automatic Reference Counting (ARC) Implementation
 - Values are boxed and reference-counted
 - Separation logic abstractions for reasoning about RC

References: Layout

Location ℓ is a reference to an object that behaves like type T

 $\mathcal{R}\left[\!\left[T\right]\!\right](l)$

References: Layout

Location ℓ is a reference to an object that behaves like type T

$\mathcal{R}\left[\!\left[T\right]\!\right](\ell)$

l	ℓ + 1
С	$O\llbracket T \rrbracket (\ell + 1)$

References: Ownership + Sharing Single reference represents one

share of underlying object

 $\mathcal{R}\left[\!\left[T\right]\!\right]\left(\ell\right)$

References: Ownership + Sharing Single reference represents one

share of underlying object

 $\mathcal{R}\left[\!\left[T\right]\!\right]\left(\ell\right)$

Single reference represents one share of underlying object

 $\mathcal{R} \llbracket T \rrbracket (\ell)$

Reference confers permission to increment count & acquire more shares

RC-INCR $\left\{ \mathcal{R}\left[\!\left[T\right]\!\right](\boldsymbol{\ell})\right\} + \boldsymbol{\ell}\left\{n. \ \lceil n > 1 \rceil \star \mathcal{R}\left[\!\left[T\right]\!\right](\boldsymbol{\ell}) \star \mathcal{R}\left[\!\left[T\right]\!\right](\boldsymbol{\ell})\right\} \right\}$

$\mathcal{R} \llbracket T \rrbracket (\ell)$

 $\begin{array}{c} \ell & \ell+1 \dots \\ \geq \mathbf{3} & \mathcal{O} \llbracket T \rrbracket (\ell+1) \\ & & \mathcal{R} \llbracket T \rrbracket (\ell) \end{array} \end{array}$

$\mathcal{R} \llbracket T \rrbracket (\ell)$

Reference confers permission to decrement count & release shares

$$\left\{ \mathcal{R}[[T]](\boldsymbol{\ell}) \right\} = -\boldsymbol{\ell} \left\{ \boldsymbol{n}. \right\}$$

$\mathcal{R}[[T]](\ell)$

Reference confers permission to decrement count & release shares

$$\left\{ \mathcal{R}[[T]](\boldsymbol{\ell}) \right\} = -\boldsymbol{\ell} \left\{ \boldsymbol{n} \cdot \left(\boldsymbol{n} > \boldsymbol{0} \right) \land \boldsymbol{m} \right\}$$

$\mathcal{R}[[T]](\ell)$

Reference confers permission to decrement count & release shares

$$\left\{ \mathcal{R}[[T]](\boldsymbol{\ell}) \right\} = -\boldsymbol{\ell} \left\{ \boldsymbol{n} \cdot \left(\boldsymbol{n} > \boldsymbol{0} \right) \land \boldsymbol{m} \right\}$$

Reference confers permission to decrement count & release shares

$$\left\{ \mathcal{R}[[T]](\boldsymbol{\ell}) \right\} = -\boldsymbol{\ell} \left\{ n \cdot \left(\lceil n > 0 \rceil \land em \right) \right\}$$

$\mathsf{np}) \lor (\ulcorner n = 0 \urcorner \star \ell \mapsto 0 \star O \llbracket T \rrbracket (\ell + 1))$

Calling Conventions

$O\left[\!\left[T_1 \to T_2\right]\!\right](\ell) \stackrel{\scriptscriptstyle \triangle}{\approx} \exists f. \ell \mapsto f \star$

Pointer to function

Calling Conventions $O[[T_1 \to T_2]](\ell) \stackrel{\wedge}{\approx} \exists f. \ell \mapsto f \star$ $\forall \boldsymbol{\ell}_1. \left\{ \mathcal{R}\left[\!\left[\boldsymbol{T}_1\right]\!\right](\boldsymbol{\ell}_1) \right\} \boldsymbol{f}(\boldsymbol{\ell}_1) \left\{ \boldsymbol{\ell}_2. \mathcal{R}\left[\!\left[\boldsymbol{T}_2\right]\!\right](\boldsymbol{\ell}_2) \right\}$

Pointer to function

Calling convention: **Caller increment**

Calling Conventions

 $O[[T_1 \to T_2]](l) \stackrel{\land}{\approx} \exists f. l \mapsto f \star$ $\forall \boldsymbol{\ell}_1. \left\{ \mathcal{R} \llbracket T_1 \rrbracket (\boldsymbol{\ell}_1) \right\} \boldsymbol{f}(\boldsymbol{\ell}_1) \left\{ \boldsymbol{\ell}_2. \mathcal{R} \llbracket T_2 \rrbracket (\boldsymbol{\ell}_2) \right\}$

VS.

Pointer to function

Calling convention: **Caller increment**

 $\forall \boldsymbol{\ell}_{1}. \left\{ \mathcal{R}\left[\!\left[\boldsymbol{T}_{1}\right]\!\right](\boldsymbol{\ell}_{1}) \right\} \boldsymbol{f}(\boldsymbol{\ell}_{1}) \left\{ \boldsymbol{\ell}_{2}. \mathcal{R}\left[\!\left[\boldsymbol{T}_{2}\right]\!\right](\boldsymbol{\ell}_{2}) \star \mathcal{R}\left[\!\left[\boldsymbol{T}_{1}\right]\!\right](\boldsymbol{\ell}_{1}) \right\}$ **Callee** increment

Calling Conventions

 $O[[T_1 \to T_2]](l) \stackrel{\land}{\approx} \exists f. l \mapsto f \star$ $\forall \boldsymbol{\ell}_1. \left\{ \mathcal{R}\left[\!\left[\boldsymbol{T}_1\right]\!\right](\boldsymbol{\ell}_1) \right\} \boldsymbol{f}(\boldsymbol{\ell}_1) \left\{ \boldsymbol{\ell}_2. \mathcal{R}\left[\!\left[\boldsymbol{T}_2\right]\!\right](\boldsymbol{\ell}_2) \right\}$

Pointer to function

Calling convention: Caller increment

 $\forall \boldsymbol{\ell}_{1}. \left\{ \mathcal{R}\left[\!\left[\boldsymbol{T}_{1}\right]\!\right](\boldsymbol{\ell}_{1}) \right\} \boldsymbol{f}(\boldsymbol{\ell}_{1}) \left\{ \boldsymbol{\ell}_{2}. \mathcal{R}\left[\!\left[\boldsymbol{T}_{2}\right]\!\right](\boldsymbol{\ell}_{2}) \star \mathcal{R}\left[\!\left[\boldsymbol{T}_{1}\right]\!\right](\boldsymbol{\ell}_{1}) \right\}$ **Callee** increment

Aggregate Layout $O\left[\left[\operatorname{struct}\operatorname{Point}\left\{x:\mathbb{Z},y:\mathbb{Z}\right\}\right]\left(\ell\right)\right]$

Aggregate Layout $O[[struct Point {x : Z, y : Z}]]({)$

Aggregate Layout

Resource Graphs

Resource Graphs

Jump Modality: It is possible to "jump" from ℓ to an object that satisfies P

 $(a_{\ell}P \star (a_{\ell}P) \approx$

Composition sums counters at the root, not in objects

Jump Modality: It is possible to "jump" from ℓ to an object that satisfies P

Reachability Modality $\diamond P$: It is possible to reach P via some set of jumps

Allows reading and incrementing from deeply nested objects

Reachability Modality $\diamond P$: It is possible to reach P via some set of jumps

Allows reading and incrementing from deeply nested objects

(*a***)**-INCR

Jump Modality: It is possible to "jump" from ℓ to an object that satisfies P

Reachability Modality $\diamond P$: It is possible to reach P via some set of jumps

Allows reading and incrementing from deeply nested objects

$$\vdash \diamond @_{\ell} P$$

$$n > 1^{\neg} \star Q \star @_{\ell} P$$

Rigid Layout

 $O\left[\left[\operatorname{struct}\operatorname{Point}\left\{x:\mathbb{Z},y:\mathbb{Z}\right\}\right]\left(\ell\right)\right]$

$= \exists \ell_x, \ell_y, \ell_y \mapsto \ell_x \star \ell + 1 \mapsto \ell_y \star \mathcal{R} \llbracket \mathbb{Z} \rrbracket (\ell_x) \star \mathcal{R} \llbracket \mathbb{Z} \rrbracket (\ell_y)$

Like C ABI

Rigid Layout

 $O\left[\left[\operatorname{struct}\operatorname{Point}\left\{x:\mathbb{Z},y:\mathbb{Z}\right\}\right]\right]$

No reordering upd struct Point { $x : \mathbb{Z}, y : \mathbb{Z}$ } \Rightarrow struct Point { $y : \mathbb{Z}, x : \mathbb{Z}$ }

$= \exists \ell_x, \ell_y, \ell_y \cdot \ell \mapsto \ell_x \star \ell + 1 \mapsto \ell_y \star \mathcal{R} \llbracket \mathbb{Z} \rrbracket (\ell_x) \star \mathcal{R} \llbracket \mathbb{Z} \rrbracket (\ell_y)$ Like C ABI

Rigid Layout

 $O[[struct Point {x : Z, y : Z}]]({)$

No reordering upd struct Point $\{x : \mathbb{Z}, y : \mathbb{Z}\} \not\Rightarrow$ struct Point $\{y : \mathbb{Z}, x : \mathbb{Z}\}$

No extensibility

$= \exists \ell_x, \ell_y, \ell_y \cdot \ell \mapsto \ell_x \star \ell + 1 \mapsto \ell_y \star \mathcal{R} \llbracket \mathbb{Z} \rrbracket (\ell_x) \star \mathcal{R} \llbracket \mathbb{Z} \rrbracket (\ell_y)$ Like C ABI

- upd struct Point { $x : \mathbb{Z}, y : \mathbb{Z}$ } $\not\Rightarrow$ struct Point { $x : \mathbb{Z}, y : \mathbb{Z}, z : \mathbb{Z}$ }

τ_2 is an ABI compatible update from τ_1 if

τ_2 is an **ABI compatible update** from τ_1 if

Resilient Layout

Like Swift ABI

Resilient Layout Client Using Point

 Ox	 Oy	 Offset Table
?	?	

Like Swift ABI

Resilient Layout Client Using Point

 Ox	 Oy	 Offset Table
?	?	

Like Swift ABI

Library Providing Point

Ox	Oy	Oz
2	0	1

More in the Paper

- Variations: Unboxed types, calling conventions, layout optimizations
- Theorems: Safety & memory reclamation, compiler compliance, type evolution

Next Steps

- Ongoing: Rust-like ABI over Wasm with ownership and borrowing
- Application: Verified FFI

