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entire library), including things like symbol names, calling conventions, and 
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— Swift

foo : (Int, Int) -> Int

int foo(int fst, int snd) 

int foo(int indir[]) 

void foo(int indir[], int *ret)

?

Behavior
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Is Realized By These Target Programs
⟦τ⟧ = { e | … }

e is ABI compliant with τ if

e ∈ ⟦τ⟧

Semantic Typing using Realistic Realizability [Benton06]

Our Proposal

The run-time contract for using a particular API

T
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More in 
Paper:  

Unboxed types
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Pointer to function

Calling convention:
Caller increment

Callee increment

vs.

More in Paper: 
Recursive closures
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ℓx …ℓ ℓ + 1 ℓy …

Physical footprint Logical footprint includes permission 
to access fields
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Client Using Point
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Offset Table

Like Swift ABI
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More in the Paper 

• Variations: Unboxed types, calling conventions, layout optimizations

• Theorems: Safety & memory reclamation, compiler compliance, type evolution

Next Steps 

• Ongoing: Rust-like ABI over Wasm with ownership and borrowing

• Application: Verified FFI
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Compiler Compliance,  Library Evolution,  FFI Safety*  
ABI Spec with Realistic Realizability

e ∈ ⟦τ⟧

Graph-Based Resources for RC
⋄ P

Paper
Slides
Contact

The Methodology

The Case Study


