
Realistic Realizability:
Specifying ABIs You Can Count On

Andrew Wagner, Zachary Eisbach, Amal Ahmed
Northeastern University

OOPSLA 2024, Pasadena, CA

What is an ABI?

2

Application Binary Interface (ABI)

The run-time contract for using a particular API (or for an
entire library), including things like symbol names, calling conventions, and
type layout information.

— Swift

What is an ABI?

2

Application Binary Interface (ABI)

The run-time contract for using a particular API (or for an
entire library), including things like symbol names, calling conventions, and
type layout information.

— Swift
Behavior

What is an ABI?

2

Application Binary Interface (ABI)

The run-time contract for using a particular API (or for an
entire library), including things like symbol names, calling conventions, and
type layout information.

— Swift

foo : (Int, Int) -> Int

int foo(int fst, int snd)

int foo(int indir[])

void foo(int indir[], int *ret)

?

Behavior

Why Use an ABI?

3

Why Use an ABI?

3

Interoperability

Why Use an ABI?

3

S1 S2Compat

Interoperability

Why Use an ABI?

3

S1

T1

S2Compat

Compat T2

Interoperability

Compiler Compiler

Compiler 1

4

S1

T1

S2

Compiler 2

Why Use an ABI? Interoperability for

API Compat

ABI Compat T2

Compilers

5

S1

T1

Why Use an ABI? Interoperability for

API Compat

ABI Compat

S2

Compiler Compiler

FFI

T2

Languages

Who is Designing an ABI?

6

Swift Rust C++

Who is Designing an ABI?

6

Swift Rust C++

Richer Types Richer ABIs?

How Should We Specify an ABI?

7

The run-time contract for using a particular API

S

How Should We Specify an ABI?

This Type τ

7

The run-time contract for using a particular API

S

How Should We Specify an ABI?

This Type τ

7

Is Realized By These Target Programs
⟦τ⟧ = { e | … }

The run-time contract for using a particular API

T

S

How Should We Specify an ABI?

This Type τ

7

Is Realized By These Target Programs
⟦τ⟧ = { e | … }

Semantic Typing using Realistic Realizability [Benton06]

The run-time contract for using a particular API

T

S

How Should We Specify an ABI?

This Type τ

7

Is Realized By These Target Programs
⟦τ⟧ = { e | … }

e is ABI compliant with τ if

e ∈ ⟦τ⟧

Semantic Typing using Realistic Realizability [Benton06]

Our Proposal

The run-time contract for using a particular API

T

● Functional Source Language

○ Recursive records and variants, higher-order recursive functions

● C-like Target

○ Block-based memory, pointer arithmetic

● Automatic Reference Counting (ARC) Implementation

○ Values are boxed and reference-counted

○ Separation logic abstractions for reasoning about RC

Case Study

8

● Functional Source Language

○ Recursive records and variants, higher-order recursive functions

● C-like Target

○ Block-based memory, pointer arithmetic

● Automatic Reference Counting (ARC) Implementation

○ Values are boxed and reference-counted

○ Separation logic abstractions for reasoning about RC

Case Study

8

e is ABI compliant with τ if

e ∈ ⟦τ⟧

The run-time contract for
using a particular type

Layout + Behavior

● Functional Source Language

○ Recursive records and variants, higher-order recursive functions

● C-like Target

○ Block-based memory, pointer arithmetic

● Automatic Reference Counting (ARC) Implementation

○ Values are boxed and reference-counted

○ Separation logic abstractions for reasoning about RC

Case Study

8

e is ABI compliant with τ if

e ∈ ⟦τ⟧

The run-time contract for
using a particular type

Layout + Behavior

References: Layout

9

ℓ ℓ + 1 …
c

Ref. Count

≈

Object DataLocation ℓ is a reference to an
object that behaves like type T

References: Layout

9

ℓ ℓ + 1 …
c

Ref. Count

≈

Object DataLocation ℓ is a reference to an
object that behaves like type T

More in
Paper:

Unboxed types

References: Ownership + Sharing

10

ℓ ℓ + 1 …

c

References: Ownership + Sharing

10

ℓ ℓ + 1 …

c≥ 1

Single reference represents one
share of underlying object

References: Ownership + Sharing

10

ℓ ℓ + 1 …

c≥ 1≥ 2≥ 3

Single reference represents one
share of underlying object

References: Ownership + Sharing

10

ℓ ℓ + 1 …

c≥ 1≥ 2≥ 3

Single reference represents one
share of underlying object

Reference confers permission to
increment count & acquire more shares

ℓ ℓ + 1 …

References: Ownership + Sharing

11

≥ 3

ℓ ℓ + 1 …

References: Ownership + Sharing

11

≥ 3≥ 2≥ 1

Reference confers permission to
decrement count & release shares

ℓ ℓ + 1 …

References: Ownership + Sharing

11

≥ 3≥ 2≥ 1> 1

Reference confers permission to
decrement count & release shares

ℓ ℓ + 1 …

References: Ownership + Sharing

11

≥ 3≥ 2≥ 1> 11

Reference confers permission to
decrement count & release shares

ℓ ℓ + 1 …

References: Ownership + Sharing

11

≥ 3≥ 2≥ 1> 110

Reference confers permission to
decrement count & release shares

Calling Conventions

12

Pointer to function

Calling Conventions

12

Pointer to function

Calling convention:
Caller increment

Calling Conventions

12

Pointer to function

Calling convention:
Caller increment

Callee increment

vs.

Calling Conventions

12

Pointer to function

Calling convention:
Caller increment

Callee increment

vs.

More in Paper:
Recursive closures

Aggregate Layout

13

Aggregate Layout

13

ℓx …ℓ ℓ + 1 ℓy …

Physical footprint

Aggregate Layout

13

ℓx …ℓ ℓ + 1 ℓy …

Physical footprint Logical footprint includes permission
to access fields

Object for ℓy

ℓy + 1

unq(ny)ny

Object for ℓx

ℓx + 1

unq(nx)nx

Object for ℓ

Resource Graphs

14

ℓ ℓ + 1

ℓy

shr(1,)

ℓx

shr(1,)

Object for ℓy

ℓy + 1

unq(ny)ny

Object for ℓx

ℓx + 1

unq(nx)nx

Object for ℓRoot

Resource Graphs

14

ℓ - 1

shr(1,)
ℓ ℓ + 1

ℓy

shr(1,)

ℓx

shr(1,)

Object for ℓy

ℓy + 1

unq(ny)

Object for ℓx

ℓx + 1

unq(nx)

Object for ℓRoot

Resource Graphs

14

ℓ - 1

shr(1,)
ℓ ℓ + 1

unq() unq()
ℓy

shr(1,)

ℓx

shr(1,)

shr Reference Counter
unq Plain Old Data

++(ℓ-1)

Object for ℓy

ℓy + 1

unq(ny)

Object for ℓx

ℓx + 1

unq(nx)

Object for ℓRoot

Resource Graphs

14

ℓ - 1

shr(1,)
ℓ ℓ + 1

unq() unq()
ℓy

shr(1,)

ℓx

shr(1,)

shr Reference Counter
unq Plain Old Data

2

Object for ℓy

ℓy + 1

unq(ny)

Object for ℓx

ℓx + 1

unq(nx)

++(ℓ-1);

Root Object for ℓ

Resource Graphs

14

ℓ - 1

shr(1,)
ℓ ℓ + 1

unq() unq()
ℓy

shr(1,)

ℓx

shr(1,)

shr Reference Counter
unq Plain Old Data

ℓy

shr(1,)

22

++ℓy

ℓy + 1

unq(ny)ny

ℓx + 1

unq(nx)nx

Resource Graphs

14

ℓ - 1

shr(1,)
ℓ ℓ + 1

ℓy

shr(1,)

ℓx

shr(1,)

ℓy

shr(1,)

222 1

1

1

ℓy + 1

unq(ny)ny

ℓx + 1

unq(nx)nx

Resource Graphs

14

ℓ - 1

shr(1,)

ℓ ℓ + 1

ℓx

shr(1,)

ℓy

shr(1,)

2

1

111 + 1

Modalities

15

Object for ℓ

Modalities

15

Jump Modality: It is possible to “jump” from ℓ to an object that satisfies P

P≈ ℓ

shr(1,)

Object for ℓ

Modalities

15

Jump Modality: It is possible to “jump” from ℓ to an object that satisfies P

P≈ ℓ

shr(1,)⋆ 2

Composition sums counters at the root, not in objects

Object for ℓ

Modalities

15

Jump Modality: It is possible to “jump” from ℓ to an object that satisfies P

P≈ ℓ

shr(1,)

Object for ℓ

Modalities

15

Jump Modality: It is possible to “jump” from ℓ to an object that satisfies P

P≈ ℓ

shr(1,)

Reachability Modality : It is possible to reach P via some set of jumps⋄ P
Allows reading and incrementing from deeply nested objects

Object for ℓ

Modalities

15

Jump Modality: It is possible to “jump” from ℓ to an object that satisfies P

P≈ ℓ

shr(1,)

Reachability Modality : It is possible to reach P via some set of jumps⋄ P
Allows reading and incrementing from deeply nested objects

Object for ℓ

Modalities

15

Jump Modality: It is possible to “jump” from ℓ to an object that satisfies P

P≈ ℓ

shr(1,)

Reachability Modality : It is possible to reach P via some set of jumps⋄ P
Allows reading and incrementing from deeply nested objects

Rigid Layout

16

Like C ABI

Rigid Layout

16

No reordering
Like C ABI

Rigid Layout

16

No reordering

No extensibility

Like C ABI

Library Evolution

17

Scli

Slib
✅

Tlib

Tcli

Compile

✅

11

❓
❓

Library Evolution

17

Scli

Slib
✅

Tlib

Tcli

Slib
2 Tlib

2

Compile

Update
✅

11

“DLL Hell” 😵💫

❓
❓

✅
✅

Library Evolution

17

Scli

Slib
✅

Tlib

Tcli

Slib
2 Tlib

2

Compile

Update
✅

τ2 is an ABI compatible update from τ1 if

⟦τ2⟧ ⊆ ⟦τ1⟧

Compatible

11

❓
❓

✅
✅

Library Evolution

17

Scli

Slib
✅

Tlib

Tcli

Slib
2 Tlib

2

Compile

Update
✅

τ2 is an ABI compatible update from τ1 if

⟦τ2⟧ ⊆ ⟦τ1⟧

Compatible

11

RigidFlexible

CSwift ?

Resilient Layout

18

Like Swift ABI

Resilient Layout

18

ℓx

… ℓ + ox … ℓ + oy …

… … …

… ox … oy …
? ?

Client Using Point

ℓy

Offset Table

Like Swift ABI

ox oy oz
2 0 1

Resilient Layout

18

ℓx

… ℓ + ox … ℓ + oy …

… … …

… ox … oy …
? ?

Client Using Point

ℓ ℓ + 1 ℓ + 2

Library Providing Point

ℓy ℓy ℓz ℓx

Offset Table

Like Swift ABI

19

More in the Paper

• Variations: Unboxed types, calling conventions, layout optimizations

• Theorems: Safety & memory reclamation, compiler compliance, type evolution

Next Steps

• Ongoing: Rust-like ABI over Wasm with ownership and borrowing

• Application: Verified FFI

Takeaways

20

Compiler Compliance, Library Evolution, FFI Safety*
ABI Spec with Realistic Realizability

e ∈ ⟦τ⟧

Graph-Based Resources for RC
⋄ P

Paper
Slides
Contact

The Methodology

The Case Study

